Layout Image

Building Community Using The PoWs

Follow along with some lessons that we’ve learned from setting up peer-mentoring programs.

1: Start with Problem Solving and Being Mentored
The peer mentors do a better job of communicating how excited they are to read math ideas from their peers when they feel like their own ideas have been valued. One way that Eileen Goodspeed (see the Teacher’s Corner from the last issue of PoWerful Ideas) from Winnetka, Illinois, helped her students get a taste of having their ideas valued was to have them submit to the Current PoWs in the FunPoW and PreAlgPoW services. Each Friday, the mentors met as a group to read the highlighted solutions and commentary, and  they analyzed how Annie Fetter and Max Ray-Riek responded to students. They noticed that Fetter and Ray-Riek were excited about reading students’ thinking, summarized the thinking that had been done so far, and asked questions to encourage people to keep thinking. Students liked seeing their own work highlighted and realized it was okay to make mistakes. (They also learned that they might be chosen because they had made an interesting mistake!)

Lois Burke (from the United States) and Arlene Smith (from Trinidad) facilitated students mentoring one another internationally. These teachers began by mentoring their own students. Part of the peer-mentoring training was to discuss how it felt to be mentored and how mentors could support their mentees to have a positive experience and to feel valued.

2: Use an Environment Students Feel Comfortable In

Many teachers using the PoWs for peer mentoring don’t use the online PoW submission form, and that’s fine. If you do want to access the form because your students are used to doing that, we can help you set up your classes for peer mentoring. However, if students work with pencil and paper, in Google Classroom, or on iPads, then starting peer mentoring in that environment makes sense. We’ve seen successful peer mentoring using “pen pal” letters with actual paper, comments on Google Docs, and email.  It’s more about the content and the process than the technology.

3: Plan Time for Revision
Successful peer-mentoring programs start small and slow, with good reason. Learning to write a positive message to a peer or younger student is challenging.  Goodspeed met with her small group of sixth-grade peer mentors several times to help them draft replies to the fourth graders they were supporting. Each reply went through several revisions, and Goodspeed worked closely with the fourth-grade teacher to ensure that the students understood why they wouldn’t hear back from their sixth-grade buddies right away. Although students can be impatient, it helped them remember that learning is all about revising. Knowing that their sixth-grade buddies had to revise their letters helped the fourth  graders realize the importance of revising their math work.

Goodspeed purposely started with a small group of students so that she could give each mentor feedback on his or her draft. She said that it was like working with a group of preservice teachers  and that the sixth graders sometimes had even more empathy and creative ideas for working with their fourth-grade students than the preservice teachers.

Here are some reflections from the sixth graders had on the peer mentoring process:

  • We don’t want to squash the 4th graders’ enthusiasm.
  • It’s hard to remember what it was like to not know the math that we know now.
  • We want to know how what the students noticed and wondered if that could help them solve the problem.
  • It’s important to start with something positive and make a connection.
  • We want to help them understand the problem first, and then learn more about their strategies.
  • Maybe showing a picture would help us understand their thinking even more.

Here is a part of a note one sixth-grade mentor (Taryn, from Goodspeed’s Teacher’s Corner article) wrote to her 4th grade peer:

I am very excited to be your mentor! I noticed that you made plenty of connections in your notices and wonders about how this problem relates to your real kickball game against the teachers. I would like to commend the fact you can interpret the information and compare it to real life! That is a great strategy for the future when you need to simplify the problem, also it makes it more interesting when you make connections. While we are talking about Notices and Wonders, I observed that you said this is a division and addition problem. What part of the problem lead you to solve with those operations?

Peer mentoring is doing a lot to help Eileen Goodspeed’s students in Winnetka, Illinois; Lois Burke in the United States; and Arlene Smith, in Trinidad, as well as many other students to create a culture of valuing mathematical thinking and communicating their ideas.