
unification of conic sections with regular polyhedra
Posted:
Oct 4, 2017 4:43 AM


Alright, before 2018, I want significant progress on this topic, in order to start the new 6th edition. I will rename it, as TRUE Math texts, previously called Correcting Math. It will be the basis of all math textbooks used from Grade School through College. I will write some of it directly for the students. But many sections are outlines for other teachers to fill in the text.
This last topic of the unification of conic sections, planar figures with regular polyhedra, 3rd dimension solid figures, is questionable as to whether there is even a unification possible. I am going purely on a hunch.
But, I know for sure of a unification of Elliptic Geometry with Hyperbolic Geometry with Euclidean Geometry. I am certain there is unification in that, which follows the formula::
Euclidean Geometry = Elliptic Geometry unioned with Hyperbolic Geometry
What it means is that Elliptic and Hyperbolic geometries are not independent existing geometries. They are not stand alone geometries. But rather, they occur when you have Euclidean geometry with broken symmetry.
The finest example is a straight line in Euclidean Geometry as 
Now, you can have a Elliptic curved line as ) and a Hyperbolic curved line as ( and when you join the two curved lines )( they cancel and yield as byproduct .
So if you have Euclidean Geometry, and you breakitssymmetry. What you then have is elliptic and hyperbolic geometry as byproducts.
Old Math thinks there are 3 separate and independent geometries. New Math says there is one and only one geometry Euclidean which is composed of elliptic unioned hyperbolic.
So the symmetry sounds like a key concept to unify conics with polyhedra.
So, starting a list of plane symmetry and of axis of symmetry, here we mean reflective symmetry.
cube and octahedron have 9 planes of symmetry
tetrahedron and square pyramid have 6 planes of symmetry
rectangular solid has 3 planes of symmetry
dodecahedron and icosahedron has 15 planes of symmetry

oval and parabola have 1 axis of symmetry
hyperbola and ellipse has 2 axis of symmetry
3gon, equilateral triangle has 3 axis of symmetry
4gon, square, 4 axis of symmetry
5gon, regular pentagon, 5 axis of symmetry
6gon, hexagon, 6 axis of symmetry
10gon, 10 axis of symmetry
So if there is a unification, I suspect to unifyer is symmetry.
Now notice a circle has infinite axis of symmetry as well as a sphere. So we have a immediate tiein of the largest. Now for the smallest, being 1 axis of symmetry and 1 plane of symmetry. The smallest 3D, I have is the rectangular solid with 3 planes of symmetry.
So, the first question is there a 3rd D object with 1 plane of symmetry.
AP

