Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: Why do we need those real non-constructible numbers?
Replies: 68   Last Post: Dec 11, 2017 1:42 AM

 Messages: [ Previous | Next ]
 bursejan@gmail.com Posts: 5,397 Registered: 9/25/16
Re: Why do we need those real non-constructible numbers?
Posted: Nov 14, 2017 2:39 PM

P.S.: Good luck in setting h=0 for the
case of f(x)=e^x. We then get the following:

f(x+h)-f(x) e^(x+h)-e^x
----------- = -----------
h h

= e^x + e^x (e^h - 1 - h)/h

= e^x + Q(h,x)

How do you set h=0 in Q(h,x)? Can you
explain? There is a division by h.

Will you use a series for e^h and thus
invoke a limit, aka the infinite sum?

Am Dienstag, 14. November 2017 20:26:16 UTC+1 schrieb burs...@gmail.com:
> So you are about to discover the limit the first
> time in your life. Still you cannot grappel with:
>
> 0.333... = 1/3
>
> What a moron. Here have a banana:
>
> Banana Song (I'm A Banana)
> Y
> Am Dienstag, 14. November 2017 19:33:49 UTC+1 schrieb John Gabriel at age 50.:

> > On Monday, 13 November 2017 11:30:19 UTC-5, bassam king karzeddin wrote:
> >
> >

> > > So, continuity doesn't exist because infinity doesn't exist either, and the assumption of existence of continuity was a total brain fart, but an artificial deliberate continuity was adopted by fabricating those (Epsilon-Delta) Distances just for practical needs which aren't truly any mathematics for sure
> >
> > Epsilonics are just a ruse from what's really going on: the inability of anyone before me to formulate a rigorous calculus.
> >
> > You see, if you try to emulate the new calculus using the bogus mainstream formulation, you get for f(x)=x^2:
> >
> > f'(x) = lim_{h -> 0} 2x + Q(h) where Q(h) = h
> >
> > In the bogus calculus Q(h) is meaningless bullshit, but let's set it to zero as we can do in the rigorous new calculus, then f'(x)=2x+h = 2x+0 = 2x.
> >
> > Setting h=0 is EQUIVALENT to finding the limit!
> >
> > But that is banned terminology. You can say things like:
> >
> > i. The value approached by the finite differences is the derivative/limit.
> > ii. As the distance is made arbitrarily small between f(x) and L, then the distance between x and c (point of tangency) also gets close to 0.
> > iii. 0<|x-c|<delta => |f(x)-L|<epsilon where epsilon>0 and delta>0. This is required just in case the orangutans need to have a hole at c.
> >
> >
> > At the end of the day, all that is being said is that setting h=0 produces the limit. (iii) is often misunderstood especially by morons on the internet as being a definition, but it is nothing of the sort. It's merely a "verifinition",
> > that is, a restatement of what is actually being done: showing that L is the right guess. It's very circular and rigour has nothing to do with it.
> >

> > > BKK

Date Subject Author
11/6/17 bassam king karzeddin
11/6/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 bassam king karzeddin
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 bursejan@gmail.com
11/8/17 bursejan@gmail.com
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 bursejan@gmail.com
11/8/17 bursejan@gmail.com
11/9/17 bassam king karzeddin
11/9/17 zelos.malum@gmail.com
11/9/17 bassam king karzeddin
11/9/17 bassam king karzeddin
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/9/17 bassam king karzeddin
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/13/17 bassam king karzeddin
11/14/17 wolfgang.mueckenheim@hs-augsburg.de
11/14/17 genmailus@gmail.com
11/14/17 bursejan@gmail.com
11/14/17 bursejan@gmail.com
11/6/17 Stephen G. Giannoni
11/6/17 zelos.malum@gmail.com
11/7/17 bassam king karzeddin
11/9/17 zelos.malum@gmail.com
11/8/17 jsavard@ecn.ab.ca
11/8/17 bassam king karzeddin
11/8/17 Jim Burns
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Jan Burse
11/8/17 Dan Christensen
11/8/17 Dan Christensen
11/8/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 bursejan@gmail.com
11/8/17 bursejan@gmail.com
11/8/17 Jan Burse
11/8/17 Jan Burse
11/11/17 bassam king karzeddin
11/11/17 zelos.malum@gmail.com
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/9/17 Tucsondrew@me.com
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Dan Christensen
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/9/17 Tucsondrew@me.com
11/9/17 Dan Christensen
11/9/17 wolfgang.mueckenheim@hs-augsburg.de
11/9/17 Dan Christensen
11/10/17 wolfgang.mueckenheim@hs-augsburg.de
11/10/17 Dan Christensen
11/11/17 wolfgang.mueckenheim@hs-augsburg.de
11/11/17 zelos.malum@gmail.com
11/11/17 wolfgang.mueckenheim@hs-augsburg.de
11/8/17 Peter Percival
11/11/17 bassam king karzeddin
11/11/17 zelos.malum@gmail.com
11/15/17 bassam king karzeddin
11/15/17 Dan Christensen
11/15/17 zelos.malum@gmail.com
11/27/17 bassam king karzeddin
11/29/17 rebatchelor2@gmail.com
11/30/17 bassam king karzeddin
12/1/17 zelos.malum@gmail.com
12/2/17 bassam king karzeddin
12/4/17 zelos.malum@gmail.com
12/6/17 bassam king karzeddin
12/9/17 bassam king karzeddin
12/11/17 zelos.malum@gmail.com