Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: FLT Discussion: Simplifying
Replies: 65   Last Post: Mar 17, 2001 11:59 PM

 Messages: [ Previous | Next ]
 Michael Hochster Posts: 187 Registered: 12/6/04
Re: FLT Discussion: Simplifying
Posted: Jan 16, 2001 7:02 PM

: Here's a case where I've left out what I think are obvious steps, and
: this person disagrees. Some may think it unnecessary for me to add
: them, others may not.

: Here are the missing steps:

: Starting from (x+sqrt(-1)y)(x-sqrt(-1)y) = x^2 + y^2 = 0,

: (x+sqrt(-1)y)(x-sqrt(-1)= 0, so

: x + sqrt(-1)y = 0 or x -sqrt(-1)y = 0, so

: x = -sqrt(1)y or x = sqrt(-1)y.

: Some, for reasons I'd like them to explain, have complained that I
: don't know that x + sqrt(-1)y = 0 or x -sqrt(-1)y = 0, if

: (x+sqrt(-1)y)(x-sqrt(-1)= 0.

: (Sort of like if AB = 0, A or B = 0. These people are saying that must
: be proven, and that it is a "gap" in my proof that I don't do so.)

: If so, I'd like them to say that is their position here and we can see
: if we can't work that one out.

Yes, that is my position. I would like an explanation of why
it is true that if AB = 0, then A = 0 or B = 0. I grant that
this statement is true when A and B are integers. However,
I would like you to verify it when A and B are funny things
like x + sqrt(-1)y and x - sqrt(-1)y (x, y integers).

Date Subject Author
1/15/01 jstevh@my-deja.com
1/15/01 Dik T. Winter
1/16/01 Charles H. Giffen
1/16/01 jstevh@my-deja.com
1/16/01 Randy Poe
1/18/01 jstevh@my-deja.com
1/18/01 Michael Hochster
1/18/01 Peter Johnston
1/18/01 Randy Poe
1/18/01 Doug Norris
1/16/01 Doug Norris
1/16/01 Randy Poe
1/16/01 Dik T. Winter
1/18/01 jstevh@my-deja.com
1/19/01 Dik T. Winter
1/19/01 Randy Poe
1/20/01 jstevh@my-deja.com
1/20/01 oooF
1/21/01 hale@mailhost.tcs.tulane.edu
1/21/01 Peter Percival
1/21/01 Randy Poe
1/26/01 Franz Fritsche
1/19/01 gus gassmann
1/20/01 jstevh@my-deja.com
1/20/01 Doug Norris
1/26/01 Franz Fritsche
1/16/01 hale@mailhost.tcs.tulane.edu
1/16/01 Randy Poe
1/17/01 hale@mailhost.tcs.tulane.edu
1/18/01 jstevh@my-deja.com
1/19/01 hale@mailhost.tcs.tulane.edu
1/20/01 jstevh@my-deja.com
1/21/01 hale@mailhost.tcs.tulane.edu
1/18/01 Peter Percival
1/19/01 hale@mailhost.tcs.tulane.edu
3/17/01 Ross A. Finlayson
1/16/01 hale@mailhost.tcs.tulane.edu
1/18/01 jstevh@my-deja.com
1/19/01 hale@mailhost.tcs.tulane.edu
1/29/01 jstevh@my-deja.com
1/19/01 Dik T. Winter
1/21/01 Dennis Eriksson
1/15/01 Michael Hochster
1/16/01 jstevh@my-deja.com
1/16/01 Michael Hochster
1/18/01 jstevh@my-deja.com
1/18/01 Peter Percival
1/18/01 Randy Poe
1/19/01 oooF
1/21/01 Dik T. Winter
1/21/01 oooF
1/18/01 Edward Carter
1/19/01 W. Dale Hall
1/19/01 Michael Hochster
1/16/01 Randy Poe
1/16/01 Randy Poe
1/17/01 W. Dale Hall
1/17/01 W. Dale Hall
1/19/01 oooF
1/16/01 Charles H. Giffen
1/16/01 David Bernier
1/16/01 jstevh@my-deja.com
1/18/01 Arthur
1/30/01 plofap@my-deja.com
1/30/01 plofap@my-deja.com
1/30/01 plofap@my-deja.com