The Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: FLT Discussion: Simplifying
Replies: 65   Last Post: Mar 17, 2001 11:59 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Michael Hochster

Posts: 187
Registered: 12/6/04
Re: FLT Discussion: Simplifying
Posted: Jan 19, 2001 8:51 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply



jstevh@my-deja.com wrote:
: In article <942neb$dd5$1@nntp.Stanford.EDU>,
: Michael Hochster <michael@rgmiller.Stanford.EDU> wrote:
:>
:>
:> : (Sort of like if AB = 0, A or B = 0. These people are saying that
: must
:> : be proven, and that it is a "gap" in my proof that I don't do so.)
:>
:> : If so, I'd like them to say that is their position here and we can
: see
:> : if we can't work that one out.
:>
:> Yes, that is my position. I would like an explanation of why
:> it is true that if AB = 0, then A = 0 or B = 0. I grant that
:> this statement is true when A and B are integers. However,
:> I would like you to verify it when A and B are funny things
:> like x + sqrt(-1)y and x - sqrt(-1)y (x, y integers).
:>

: Hey, I've already seen the post where someone says you guys proved that
: AB = 0, when A = 0, or B = 0 by using x^2 + y^2 = 0.


I'm not sure what your point is here. Are you conceding that
your argument is circular?


: I concede that one could debate the question of whether or not there
: might exist some objects in an infinite ring that could be nonzero and
: multiply times each other to give 0. After all, it's trivally done in
: a finite ring.


Just for future reference, there is standard terminology for this.
A ring in which AB = 0 implies A = 0 or B = 0 is called an
integral domain.

There are simple examples of infinite rings which are not
integral domains. Take ordered pairs of integers with coordinatewise
addition and multiplication.

You wanted to use a "result" (Every infinite ring is an integral
domain) to justify the next step of your argument. But you were
unsure whether the result was true. That means you have a *gap*.
There is no such thing as proof by I-can't-think-of-a-counterexample.
In this case, the result you wanted to use is false.

Mike






Date Subject Author
1/15/01
Read FLT Discussion: Simplifying
jstevh@my-deja.com
1/15/01
Read Re: FLT Discussion: Simplifying
Dik T. Winter
1/16/01
Read Re: FLT Discussion: Simplifying
Charles H. Giffen
1/16/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/16/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/18/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/18/01
Read Re: FLT Discussion: Simplifying
Michael Hochster
1/18/01
Read Re: FLT Discussion: Simplifying
Peter Johnston
1/18/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/18/01
Read Re: FLT Discussion: Simplifying
Doug Norris
1/16/01
Read Re: FLT Discussion: Simplifying
Doug Norris
1/16/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/16/01
Read Re: FLT Discussion: Simplifying
Dik T. Winter
1/18/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/19/01
Read Re: FLT Discussion: Simplifying
Dik T. Winter
1/19/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/20/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/20/01
Read Re: FLT Discussion: Simplifying
oooF
1/21/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/21/01
Read Re: FLT Discussion: Simplifying
Peter Percival
1/21/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/26/01
Read Re: FLT Discussion: Algebra...
Franz Fritsche
1/19/01
Read Re: FLT Discussion: Simplifying
gus gassmann
1/20/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/20/01
Read Re: FLT Discussion: Simplifying
Doug Norris
1/26/01
Read Re: FLT Discussion: Matrix or not, that's NOT the question...
Franz Fritsche
1/16/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/16/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/17/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/18/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/19/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/20/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/21/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/18/01
Read Re: FLT Discussion: Simplifying
Peter Percival
1/19/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
3/17/01
Read Re: FLT Discussion: Simplifying
Ross A. Finlayson
1/16/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/18/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/19/01
Read Re: FLT Discussion: Simplifying
hale@mailhost.tcs.tulane.edu
1/29/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/19/01
Read Re: FLT Discussion: Simplifying
Dik T. Winter
1/21/01
Read Re: FLT Discussion: Simplifying
Dennis Eriksson
1/15/01
Read Re: FLT Discussion: Simplifying
Michael Hochster
1/16/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/16/01
Read Re: FLT Discussion: Simplifying
Michael Hochster
1/18/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/18/01
Read Re: FLT Discussion: Simplifying
Peter Percival
1/18/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/19/01
Read Re: FLT Discussion: Simplifying
oooF
1/21/01
Read Re: FLT Discussion: Simplifying
Dik T. Winter
1/21/01
Read Re: FLT Discussion: Simplifying
oooF
1/18/01
Read Re: FLT Discussion: Simplifying
Edward Carter
1/19/01
Read Re: FLT Discussion: Simplifying
W. Dale Hall
1/19/01
Read Re: FLT Discussion: Simplifying
Michael Hochster
1/16/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/16/01
Read Re: FLT Discussion: Simplifying
Randy Poe
1/17/01
Read Re: FLT Discussion: Simplifying
W. Dale Hall
1/17/01
Read Re: FLT Discussion: Simplifying (Grammar fix)
W. Dale Hall
1/19/01
Read Re: FLT Discussion: Simplifying
oooF
1/16/01
Read Re: FLT Discussion: Simplifying
Charles H. Giffen
1/16/01
Read Re: FLT Discussion: Simplifying
David Bernier
1/16/01
Read Re: FLT Discussion: Simplifying
jstevh@my-deja.com
1/18/01
Read Hi - little fun about FLT
Arthur
1/30/01
Read Re: FLT Discussion: Simplifying
plofap@my-deja.com
1/30/01
Read Re: FLT Discussion: Simplifying
plofap@my-deja.com
1/30/01
Read Re: FLT Discussion: Simplifying
plofap@my-deja.com

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.