Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Inactive » Historia-Matematica

Topic: [HM] question about term "normal"
Replies: 13   Last Post: Dec 7, 2006 4:19 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
William C Waterhouse

Posts: 655
Registered: 12/3/04
Re: [HM] Cauchy
Posted: Nov 22, 2006 4:06 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply


On Tue, 14 Nov 2006, Gunnar Berg <gunnar@math.uu.se>

>
> Dear all.
> In perusing Cauchys "Cours d'analyse" (1821) I have come across the
> following (p.35):
>
> "Enfin, lorsqu'un fonction f(x) cesse d'etre continue dans le voisinage
> d'une valeur particuliere de la variable x, on dit qu'elle devient
> alors discontinue, et qu'il y a pour cette valeur particuliere
> solution de continuite."
>
> What puzzles me is the last phrase - "solution de continuite" -
> I simply cannot make any sense of it. What can Augustin-Louis mean?



This is "solution" in the sense of "dissolution"; the specific
use here is a fixed phrase. Here's the relevant dictionary entry
from TLFi:

_Solution de continuite'_. Se'paration, division de parties d'une
chose abstraite ou concr`ete. Synon. _hiatus, rupture_.

One example cited is this:

...l'Angleterre du XXe si`ecle arrivait ainsi, sans re'volution
ni ve'ritable solution de continuite', `a donner le mod`ele
du type des de'mocracies occidentales.


The equivalent English would probably be "a break in [the] continuity."


William C. Waterhouse
Penn State




Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.