Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Answer to Dik T. Winter
Replies: 441   Last Post: Feb 5, 2013 6:25 AM

 Messages: [ Previous | Next ]
 mueckenh@rz.fh-augsburg.de Posts: 18,076 Registered: 1/29/05
Re: Answer to Dik T. Winter
Posted: Jun 15, 2009 2:52 PM

On 15 Jun., 18:09, Owen Jacobson <angrybald...@gmail.com> wrote:
> On 2009-06-14 14:41:40 -0400, WM <mueck...@rz.fh-augsburg.de> said:
>
>
>
>
>

> > On 14 Jun., 17:31, Owen Jacobson <angrybald...@gmail.com> wrote:
> >> On 2009-06-13 14:29:05 -0400, WM <mueck...@rz.fh-augsburg.de> said:
>
> >>> We agree that in Cantor's diagonal argument, applied to real numbers,
> >>> the numbers are represented and identified solely by their digits. No
> >>> further information is available.

>
> >>> We assume that a real number p can be distinguished from a set Q of
> >>> real numbers q by general considerations, for instance, if p is a
> >>> transcendental number and Q consists of rational numbers q only.

>
> >>> Of course it would be impossible to distinguish p from all q, because
> >>> for every digit d_n of p, there is a number q that shares all digits
> >>> up to d_n with p.

>
> >> Wait, so you're arguing that you can't distinguish 1/pi (roughly
> >> 0.31830988...) from a set containing all rationals in [0, 1] because,
> >> for example, 3/10 is equal to 1/pi to the first decimal place, 31/100
> >> is equal to the second, and so on? What about the non-zero difference
> >> between any one rational number and 1/pi?

>
> >> |1/pi - 3/10| is greater than the rational 1/50. |1/pi - 31/100| is
> >> greater than the rational 1/125.  In fact, for each rational q in [0,
> >> 1], 1/pi differs from q by an amount greater than some other rational r
> >> in [0, 1], so we can distinguish 1/pi from every rational in [0, 1].

>
> > If 1/pi exists as an actually infinite digit sequence.
>
> Since there is a function g from N to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
> that, for *every* element n of N, produces the n'th decimal place of
> 1/pi, it's safe to say that 1/pi has an infinite decimal
> representation. There's also a function g' from N to {0, 1} that
> produces, for *every* element n of N, the n'th bit of the binary
> representation of 1/pi.

That does not help, because *every* element of N is at a finite place,
and for every element of N the sequence 1, ..., n is finite.

>
> > There are two statements:
> > 1) Path p can be distinguished from every path of the countable set P
> > that is used to construct the tree.
> > 2) Path p cannot be distinguished from every path of P.

>
> Reading upstream a bit, I think you've misapprehended the point people
> are making. If P is a set of paths, and the union of all elements of P
> is the maximal complete binary tree, then there can be paths in the
> union of all elements of P that are not in P.

Magic?

In fact there is no union. We simply write the paths p_n of P in
slightly different form: The beginning
zeros of all paths are written only once, the following 1 or 0 also
are written only once each and so on. Note, we have not done anything
else but writing the list in slightly different form, saving some
ink. In particular we have not added any new path.

This yields the complete binary tree. You are unable to distinguish
any binary sequence representing a real of the unit interval from
every path of that tree.

>If P is a countable set,
> then there are necessarily paths in the union of all elements of P that
> are not in P.

Why should they? "Necessarily" would be correct if actual infinity
existed, but it necessarily doesn't.
>
> In fact, one such set P is the set of finite rooted paths, which is
> isomorphic to the set of nodes in the maximal complete binary tree.
> We'll adopt a notation where each node is labelled with the set of left
> (denoted as 0) and right (denoted as 1) branchings necessary to reach
> it, prefixed by a dot (.):
>
> . is the root node.
> .0 is the left child of the root node.
> .1 is the right child of the root node.
> .00 is the left child of the left child of the root node.
> .01 is the right child of the left child of the root node.
> .10 is the left child of the right child of the root node.
> .11 is the right chind of the right child of the root node.
> (And so on.)
>
> Because every node can be reached in only finitely many branchings (as
> a consequence of the tree being representable as an infinite set of
> finite paths), every node has a finite label.

That is similar to every bit of 1/3 = 0.010101... in binary. Evere bit
has a finite label.
>
> We'll denote paths in the standard way, as sets of nodes:
>
> {., .0} is the path from the root to the leftmost rank 1 node.
> {., .0, .01} is the path from the root to the right-hand child of the
> left-hand child of the root node.
>
> Finite rooted paths can also be identified, for convenience, by their
> terminal node: there is one and only one path from the root node to the
> node .001101, so writing out the complete path is pointless. However,
> *infinite* paths do not have a terminal node, so they must be described
> in some other way - for example, by a function from N to the nodes of
> the tree.
>
> A path exists in the tree if and only if (every node on that path is in
> the tree) and (the path is a connected, linear subgraph of the tree).
> Two paths A and B are equal if and only if the set of nodes in path A
> is equal to the set of nodes on path B.
>
> There is a function f from N to the set of nodes that, for every
> natural number n, produces the node labelled by the first n binary
> places of 1/pi's binary expansion. This function describes a path. This
> path is distinct from every path in the set of finite paths used to
> describe the tree, because for every path in that set, the path
> described by this function contains more nodes.

And for *every* bit a_n of this infinite path there is a terminating
path in the tree that contains n^n^n more nodes.
>
> Informally, the path q from 1/pi under f is
> {., .0, .01, .010, .0101, .01010, .010100, .0101000, .01010001,
> .010100010, ...}. (Formally, it is only finitely describable as a
> function, not as an element-by-element list of nodes.)
> This path is distinct from each finite path:
> {.} is missing the node .0, which is in q.
> {., .0} is missing the node .01, which is in q.
> {., .0, .01} is missing the node .010, which is in q.
>
> In fact, we can continue this indefinitely; none of the finite rooted
> paths from which the tree is derived contains every node in q. However,
> every node in q is in the tree, since every one of its infinitely-many
> nodes is reachable from the root node after finitely many branchings.
> So q is a path over the maximal complete binary tree even though the
> maximal complete binary tree can be derived from a set that does not
> contain q.

No it can't, unless magic plays a role. Every path in the tree is a
finite path.
>
> This is equivalent to the argument from arithmetic that there is, for
> every rational x, a rational y that is closer to 1/pi than x, presented
> above.

And for each of these claoser rationals is far away from pi.
>
> > One of them is false, unless it is a magic tree where something
> > happens during construction. But I do not believe in magic, least in
> > mathematics.

>
> That a union of infinitely many distinct finite paths can contain
> infinite paths does not surprise me.

There is no union. But even in set theory a union of sets should not
contain elements that are in none of the united sets.

> In ZFC, one formulation of the
> axiom of infinity takes exactly the form of an infinite union of finite
> elements. Only a union of finitely many finite elements or a (possibly,
> infinite) union of finitely many distinct finite elements ({1} U {1} U
> {1} U {1} U {1} U ... = {1}, for example), neither of which is
> sufficient to produce the maximal complete binary tree, is a finite set.
>
> Conversely, in a set theory with no infinite sets, there is also no
> binary tree containing the path q (from above). Both kinds of theory
> can be internally consistent, which is as close to "true" as anything
> in mathematics gets.

Actual or finished infinity as close to false as anything can get,
within and outside of mathematics.

Regards, WM

Date Subject Author
5/27/09 mueckenh@rz.fh-augsburg.de
5/27/09 Dik T. Winter
5/27/09 mueckenh@rz.fh-augsburg.de
5/27/09 mueckenh@rz.fh-augsburg.de
5/27/09 Virgil
5/27/09 mueckenh@rz.fh-augsburg.de
5/27/09 Virgil
5/27/09 Virgil
5/28/09 mueckenh@rz.fh-augsburg.de
5/28/09 Virgil
5/28/09 Dik T. Winter
5/28/09 G. Frege
5/28/09 Jesse F. Hughes
5/29/09 Dik T. Winter
5/29/09 G. Frege
5/29/09 Dik T. Winter
5/30/09 G. Frege
5/30/09 Jesse F. Hughes
6/2/09 Dik T. Winter
5/30/09 Jesse F. Hughes
6/1/09 mueckenh@rz.fh-augsburg.de
6/1/09 Jesse F. Hughes
6/1/09 Virgil
6/2/09 george
6/2/09 Denis Feldmann
6/2/09 Dik T. Winter
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 William Hughes
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 William Hughes
6/11/09 Guest
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 William Hughes
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 William Hughes
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 William Hughes
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 William Hughes
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 William Hughes
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 William Hughes
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 William Hughes
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 William Hughes
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 William Hughes
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 William Hughes
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/14/09 Owen Jacobson
6/14/09 Virgil
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 William Hughes
6/13/09 mueckenh@rz.fh-augsburg.de
6/13/09 Virgil
6/13/09 William Hughes
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 William Hughes
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 William Hughes
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 William Hughes
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 William Hughes
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 William Hughes
6/15/09 mueckenh@rz.fh-augsburg.de
6/15/09 Virgil
6/15/09 William Hughes
6/15/09 mueckenh@rz.fh-augsburg.de
6/15/09 Virgil
6/15/09 William Hughes
6/15/09 mueckenh@rz.fh-augsburg.de
6/15/09 Virgil
6/15/09 mueckenh@rz.fh-augsburg.de
6/15/09 Virgil
6/15/09 William Hughes
6/15/09 mueckenh@rz.fh-augsburg.de
6/16/09 Virgil
6/16/09 mueckenh@rz.fh-augsburg.de
6/16/09 Virgil
2/5/13
6/16/09 William Hughes
6/16/09 mueckenh@rz.fh-augsburg.de
6/16/09 Virgil
6/16/09 William Hughes
6/16/09 mueckenh@rz.fh-augsburg.de
6/16/09 Virgil
6/16/09 mueckenh@rz.fh-augsburg.de
6/16/09 Virgil
6/16/09 William Hughes
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
6/17/09 William Hughes
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
6/17/09 William Hughes
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
6/17/09 William Hughes
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
7/17/09 scriber77@yahoo.com
6/17/09 William Hughes
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
6/17/09 William Hughes
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Virgil
6/17/09 mueckenh@rz.fh-augsburg.de
6/17/09 Owen Jacobson
6/17/09 Virgil
6/17/09 William Hughes
6/18/09 mueckenh@rz.fh-augsburg.de
6/18/09 Virgil
6/18/09 William Hughes
6/18/09 mueckenh@rz.fh-augsburg.de
6/18/09 Virgil
6/18/09 William Hughes
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/19/09 William Hughes
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/19/09 William Hughes
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/19/09 William Hughes
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/19/09 William Hughes
6/20/09 mueckenh@rz.fh-augsburg.de
6/20/09 Virgil
6/20/09 William Hughes
6/20/09 mueckenh@rz.fh-augsburg.de
6/20/09 Virgil
6/20/09 William Hughes
6/20/09 mueckenh@rz.fh-augsburg.de
6/20/09 Virgil
6/20/09 William Hughes
6/20/09 george
6/20/09 george
6/20/09 Virgil
6/20/09 george
6/2/09 george
6/2/09 Jesse F. Hughes
6/3/09 george
6/3/09 mueckenh@rz.fh-augsburg.de
6/3/09 george
6/3/09 Virgil
6/3/09 Guest
6/3/09 Marshall
6/3/09 Jack Markan
6/3/09 Dik T. Winter
6/3/09 Guest
6/7/09 mueckenh@rz.fh-augsburg.de
6/7/09 Virgil
6/7/09 mueckenh@rz.fh-augsburg.de
6/7/09 Virgil
6/8/09 mueckenh@rz.fh-augsburg.de
6/8/09 Virgil
6/9/09 mueckenh@rz.fh-augsburg.de
6/9/09 Virgil
6/9/09 William Hughes
6/9/09 Virgil
6/10/09 mueckenh@rz.fh-augsburg.de
6/10/09 Virgil
6/10/09 mueckenh@rz.fh-augsburg.de
6/10/09 Virgil
6/10/09 mueckenh@rz.fh-augsburg.de
6/10/09 William Hughes
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 William Hughes
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Rainer Rosenthal
6/11/09 Virgil
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 Dik T. Winter
6/11/09 William Hughes
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 Dik T. Winter
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/19/09 Dik T. Winter
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/19/09 Virgil
6/22/09 Dik T. Winter
6/25/09 mueckenh@rz.fh-augsburg.de
6/25/09 Virgil
6/30/09 Dik T. Winter
6/30/09 mueckenh@rz.fh-augsburg.de
7/1/09 Dik T. Winter
7/1/09 Guest
7/2/09 mueckenh@rz.fh-augsburg.de
7/2/09 Virgil
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Rainer Rosenthal
6/12/09 Virgil
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Guest
6/12/09 Rainer Rosenthal
6/12/09 Virgil
6/3/09 george
6/3/09 Dik T. Winter
5/28/09 William Hughes
5/29/09 mueckenh@rz.fh-augsburg.de
5/29/09 Virgil
5/30/09 mueckenh@rz.fh-augsburg.de
5/30/09 Virgil
5/31/09 mueckenh@rz.fh-augsburg.de
5/31/09 Virgil
6/2/09 Dik T. Winter
6/2/09 Virgil
6/3/09 mueckenh@rz.fh-augsburg.de
6/3/09 Virgil
6/7/09 mueckenh@rz.fh-augsburg.de
6/7/09 Virgil
6/3/09 mueckenh@rz.fh-augsburg.de
6/3/09 Virgil
6/3/09 Dik T. Winter
6/7/09 mueckenh@rz.fh-augsburg.de
6/7/09 Virgil
6/11/09 Dik T. Winter
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 Dik T. Winter
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/19/09 Dik T. Winter
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/22/09 Dik T. Winter
6/25/09 mueckenh@rz.fh-augsburg.de
6/25/09 Virgil
6/30/09 Dik T. Winter
6/30/09 mueckenh@rz.fh-augsburg.de
6/30/09 MeAmI.org
6/30/09 Virgil
7/1/09 Dik T. Winter
7/2/09 G. Frege
7/2/09 Dik T. Winter
7/2/09 herb z
7/2/09 Dik T. Winter
7/2/09 herb z
7/2/09 G. Frege
7/3/09 Aatu Koskensilta
7/3/09 Daryl McCullough
7/2/09 G. Frege
7/2/09 G. Frege
7/2/09 G. Frege
7/2/09 Jack Markan
7/2/09 G. Frege
7/2/09 Jack Markan
7/2/09 G. Frege
7/2/09 Jack Markan
7/3/09 Dik T. Winter
7/3/09 G. Frege
7/3/09 Dik T. Winter
7/3/09 G. Frege
7/4/09 Aatu Koskensilta
7/6/09 Dik T. Winter
7/6/09 G. Frege
7/6/09 Dik T. Winter
7/6/09 Jesse F. Hughes
7/3/09 mueckenh@rz.fh-augsburg.de
7/3/09 Virgil
7/2/09 G. Frege
7/2/09 Virgil
7/2/09 mueckenh@rz.fh-augsburg.de
7/2/09 ross.finlayson@gmail.com
7/2/09 mueckenh@rz.fh-augsburg.de
7/2/09 Jack Markan
7/2/09 Jack Markan
7/2/09 Virgil
7/2/09 ross.finlayson@gmail.com
7/2/09 Jack Markan
7/2/09 ross.finlayson@gmail.com
7/6/09 Jack Markan
7/6/09 ross.finlayson@gmail.com
7/6/09 Jack Markan
7/6/09 ross.finlayson@gmail.com
7/6/09 Jack Markan
6/8/09 mueckenh@rz.fh-augsburg.de
6/8/09 Virgil
6/9/09 Jack Markan
6/9/09 Jack Markan
6/9/09 Virgil
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 William Hughes
6/11/09 Virgil
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/12/09 herb z
6/12/09 Virgil
6/12/09 Owen Jacobson
6/12/09 Virgil
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/11/09 Virgil
6/11/09 Dik T. Winter
6/11/09 William Hughes
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 YBM
6/11/09 Virgil
6/11/09 Dik T. Winter
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/12/09 mueckenh@rz.fh-augsburg.de
6/12/09 Virgil
6/19/09 Dik T. Winter
6/19/09 mueckenh@rz.fh-augsburg.de
6/19/09 Virgil
6/22/09 Dik T. Winter
6/25/09 mueckenh@rz.fh-augsburg.de
6/25/09 Virgil
6/30/09 Dik T. Winter
6/30/09 Virgil
6/30/09 Guest
6/30/09 mueckenh@rz.fh-augsburg.de
7/1/09 Dik T. Winter
6/11/09 mueckenh@rz.fh-augsburg.de
6/11/09 Virgil
6/3/09 mueckenh@rz.fh-augsburg.de
6/3/09 Virgil
6/3/09 Dik T. Winter
6/7/09 mueckenh@rz.fh-augsburg.de
6/7/09 Virgil
6/11/09 Dik T. Winter
6/3/09 george
5/29/09 mueckenh@rz.fh-augsburg.de
5/29/09 Virgil
5/30/09 mueckenh@rz.fh-augsburg.de
5/30/09 Virgil
5/31/09 mueckenh@rz.fh-augsburg.de
5/31/09 Virgil
5/31/09 Guest
5/27/09 Virgil
5/28/09 mueckenh@rz.fh-augsburg.de
5/28/09 Virgil
5/30/09 mueckenh@rz.fh-augsburg.de
5/30/09 Virgil
5/30/09 Virgil
5/30/09 Virgil
5/30/09 Virgil
5/27/09 mueckenh@rz.fh-augsburg.de
5/27/09 David C. Ullrich
5/27/09 Virgil
5/27/09 Guest
5/27/09 mueckenh@rz.fh-augsburg.de
5/28/09 mueckenh@rz.fh-augsburg.de
5/28/09 Virgil
5/29/09 Peter Webb
5/29/09 Virgil
5/29/09 mueckenh@rz.fh-augsburg.de
5/29/09 Virgil
5/29/09 Peter Webb
5/30/09 mueckenh@rz.fh-augsburg.de
5/30/09 Virgil
5/30/09 Peter Webb
5/31/09 mueckenh@rz.fh-augsburg.de
5/31/09 Virgil
5/31/09 mueckenh@rz.fh-augsburg.de
5/31/09 Peter Webb
5/31/09 Virgil
6/1/09 mueckenh@rz.fh-augsburg.de
6/1/09 David Bernier
6/1/09 Jack Markan
6/1/09 Virgil
6/2/09 george
6/1/09 mueckenh@rz.fh-augsburg.de
6/1/09 Virgil
6/2/09 george
6/2/09 george
6/2/09 george
6/3/09 george
6/12/09 Guest
2/5/13
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/14/09 mueckenh@rz.fh-augsburg.de
6/14/09 Virgil
6/15/09 Owen Jacobson
6/15/09 Virgil
6/15/09 mueckenh@rz.fh-augsburg.de
6/15/09 Owen Jacobson
6/15/09 Virgil
6/15/09 Virgil
6/16/09 MeAmI.org
6/16/09 mueckenh@rz.fh-augsburg.de
6/16/09 Virgil
6/18/09 mueckenh@rz.fh-augsburg.de
6/18/09 Virgil
6/20/09 Guest