Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: algebra regents 2011
Replies: 27   Last Post: Jun 20, 2011 3:05 PM

 Messages: [ Previous | Next ]
 ezseller@mail.nasboces.org Posts: 43 Registered: 2/18/05
Re: algebra regents 2011
Posted: Jun 20, 2011 8:53 AM
 att1.html (5.5 K) att1.dat (0.4 K)

The first three definitions below are from the NYS high school glossary. "Term" was defined in the pk-8 glossary.

trinomial (A) A polynomial with exactly three terms.

Examples: a + 2b + c, x^2 - 3x + 5, 4c^2d+5cd^2+8
polynomial (A) A monomial or sum of monomials.

Example: The sum 4x2 + (-2x) + (-8) can be written as 4x2 ? 2x ? 8

monomial (A) A polynomial with one term; it is a number, a variable, or the product of a number (the coefficient) and one or more variables.

Examples: 6, -3/4, x^2, 1/8 x^5, -5.9y, m^2n^2p^4

term The addends of an algebraic expression

>>> "Roberta M. Eisenberg" <bobbi610@me.com> 6/19/2011 12:13 AM >>>

On Jun 18, 2011, at 8:48 AM, Bob wrote:

> By definition of trinomial (three terms separated by + or - signs)

I realize that your emphasis was elsewhere and that you probably made this def. in haste; however, a trinomial is composed of three monomials (no variable in the denominator) and not three terms (can have variable(s) in the denominator).

Bobbi Eisenberg
*******************************************************************
* To unsubscribe from this mailing list, email the message
* "unsubscribe nyshsmath" to majordomo@mathforum.org
*
* http://mathforum.org/kb/forum.jspa?forumID=671
*******************************************************************
<META content="text/html; charset=utf-8" http-equiv=Content-Type>
<BODY style="MARGIN: 4px 4px 1px; FONT: 10pt Tahoma">
<DIV>The first three definitions below are from the NYS high school glossary. "Term" was defined in the pk-8 glossary. </DIV>
<DIV>&nbsp;</DIV>
<DIV>
<P style="MARGIN: 0in 0in 0pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial">trinomial</SPAN></B><SPAN style="FONT-FAMILY: Arial"><SPAN style="mso-spacerun: yes">&nbsp; </SPAN><I style="mso-bidi-font-style: normal">(A)<SPAN style="COLOR: fuchsia"> </SPAN></I>A polynomial with exactly three terms.<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:p></o:p></SPAN></P>
<P style="MARGIN: 0in 0in 0pt" class=MsoNormal><SPAN style="FONT-FAMILY: Arial"><o:p>&nbsp;</o:p></SPAN></P>
<P style="TEXT-INDENT: 0.5in; MARGIN: 0in 0in 0pt" class=MsoNormal><B style="mso-bidi-font-weight: normal"><SPAN style="FONT-FAMILY: Arial">Examples</SPAN></B><SPAN style="FONT-FAMILY: Arial">:<SPAN style="mso-spacerun: yes">&nbsp; </SPAN><SPAN style="POSITION: relative; TOP: 5pt; mso-text-raise: -5.0pt"><?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><v:shapetype id=_x0000_t75 stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></v:path><o:lock aspectratio="t" v:ext="edit"></o:lock></v:shapetype><v:shape style="WIDTH: 207pt; HEIGHT: 18pt" id=_x0000_i1025 o:ole="" type="#_x0000_t75">
<DIV><v:imagedata o:title="" src="cid:JAYLNTWXAYYG.clip_image001.wmz"><FONT size=1>a + 2b + c, x^2 - 3x + 5,&nbsp;&nbsp;&nbsp; 4c^2d+5cd^2+8</FONT></v:imagedata></DIV></v:shape></P></SPAN><o:p></o:p></SPAN>
<P style="TEXT-INDENT: 0.5in; MARGIN: 0in 0in 0pt" class=MsoNormal><SPAN style="FONT-FAMILY: Arial"><o:p>&nbsp;</o:p></SPAN></P>
<P style="MARGIN: 0in 0in 0pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial">polynomial</SPAN></B><SPAN style="FONT-FAMILY: Arial; mso-no-proof: yes"><SPAN style="mso-spacerun: yes">&nbsp; </SPAN><I>(A)</I><SPAN style="mso-spacerun: yes">&nbsp; </SPAN></SPAN><SPAN style="FONT-FAMILY: Arial">A monomial or sum of monomials. <o:p></o:p></SPAN></P>
<P style="MARGIN: 0in 0in 0pt" class=MsoNormal><SPAN style="FONT-FAMILY: Arial"><o:p>&nbsp;</o:p></SPAN></P>
<P style="TEXT-INDENT: 0.5in; MARGIN: 0in 0in 0pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial">Example</SPAN></B><SPAN style="FONT-FAMILY: Arial">: The sum 4x<SUP>2</SUP> + (-2x) + (-8) can be written as 4x<SUP>2</SUP> ? 2x ? 8<o:p></o:p></SPAN></P>
<P style="MARGIN: 0in 0in 0pt" class=MsoNormal><SPAN style="FONT-FAMILY: Arial"><o:p>&nbsp;</o:p></SPAN></P>
<P style="MARGIN: 0in 0in 0pt; mso-layout-grid-align: none" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial">monomial</SPAN></B><SPAN style="FONT-FAMILY: Arial"><SPAN style="mso-spacerun: yes">&nbsp; </SPAN><I>(A)</I><SPAN style="mso-spacerun: yes">&nbsp; </SPAN>A polynomial with one term; it is a number, a variable, or the product of a number (the coefficient) and one or more variables.</SPAN><SPAN style="FONT-FAMILY: Arial"><SPAN style="mso-spacerun: yes">&nbsp;&nbsp; </SPAN><o:p></o:p></SPAN></P>
<P style="TEXT-INDENT: 0.5in; MARGIN: 0in 0in 0pt; mso-layout-grid-align: none" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial"></SPAN></B>&nbsp;</P>
<P style="TEXT-INDENT: 0.5in; MARGIN: 0in 0in 0pt; mso-layout-grid-align: none" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial">Examples</SPAN></B><SPAN style="FONT-FAMILY: Arial">: 6, -3/4, x^2, 1/8 x^5, -5.9y, m^2n^2p^4<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;</SPAN><SUP><SPAN style="mso-spacerun: yes">&nbsp;</SPAN><o:p></o:p></SUP></SPAN></P>
<P style="TEXT-INDENT: 0.5in; MARGIN: 0in 0in 0pt; mso-layout-grid-align: none" class=MsoNormal><SUP><SPAN style="FONT-FAMILY: Arial"><o:p>&nbsp;</o:p></SPAN></SUP></P>
<P style="MARGIN: 0in 0in 0pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: Arial">term<SPAN style="mso-spacerun: yes">&nbsp; </SPAN></SPAN></B><SPAN style="FONT-FAMILY: Arial">The addends of an algebraic expression<SUP><o:p></o:p></SUP></SPAN></P><BR><BR>&gt;&gt;&gt; "Roberta M. Eisenberg" &lt;bobbi610@me.com&gt; 6/19/2011 12:13 AM &gt;&gt;&gt;<BR><BR>On Jun 18, 2011, at 8:48 AM, Bob wrote:<BR><BR>&gt; By definition of trinomial (three terms separated by + or - signs)<BR><BR>I realize that your emphasis was elsewhere and that you probably made this def. in haste;&nbsp; however, a trinomial is composed of three monomials (no variable in the denominator) and not three terms (can have variable(s) in the denominator).<BR><BR>Bobbi Eisenberg<BR>*******************************************************************<BR>* To unsubscribe from this mailing list, email the message<BR>* "unsubscribe nyshsmath" to majordomo@mathforum.org<BR>*<BR>* Read prior posts and download attachments from the web archives at<BR>* <A href="http://mathforum.org/kb/forum.jspa?forumID=671">http://mathforum.org/kb/forum.jspa?forumID=671</A><BR>*******************************************************************<BR></DIV></BODY></HTML>

Date Subject Author
6/16/11 L.C.
6/16/11 Nanette DeGroat
6/17/11 precopio@nycap.rr.com
6/17/11 Kevin Wolpert
6/17/11 Luisahaw@aol.com
6/17/11 Kathy
6/18/11 MathCaryl@aol.com
6/19/11 Evan Romer
6/19/11 Evan Romer
6/17/11 Jessalyn
6/17/11 mfreebern
6/17/11 Vera Sinnreich
6/17/11 Tom Kenyon
6/18/11 bill wickes
6/17/11 JFish@csufsd.org
6/17/11 Guest
6/17/11 ElizWaite@aol.com
6/18/11 Meg Clemens
6/18/11 MathCaryl@aol.com
6/18/11 Bob
6/19/11 Roberta M. Eisenberg
6/20/11 ezseller@mail.nasboces.org
6/20/11 Roberta M. Eisenberg
6/20/11 precopio@nycap.rr.com
6/20/11 precopio@nycap.rr.com
6/20/11 Tom Kenyon
6/20/11 Guest
6/20/11 precopio@nycap.rr.com