Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.

Topic: Re: Matheology §019
Replies: 88   Last Post: Jun 6, 2012 10:59 PM

 Messages: [ Previous | Next ]
 mueckenh@rz.fh-augsburg.de Posts: 12,658 Registered: 1/29/05
Re: Matheology ?019
Posted: Jun 4, 2012 2:37 PM

On 4 Jun., 19:42, "dilettante" <n...@nonono.no> wrote:

> >The limit was exactly the same if all your intervals started at -1 or
> >+1, respectively. The difference is that a truely connected component
> >has its limit independent of the finite definition of a sequence: If
> >there are intervals like [0, 1-1/n], then, independent of any
> >definition, the first possibility for an uncovered point would be the
> >0.

>
> Of course the limit is the same. There is no dispute about that. But the
> connected components, your "clusters" are not the same. And there are whole
> intervals uncovered arbitrarily close to 0, as well as whole intervals
> covered.
>

from all these intervals by extended intervals. But certainly there is
no point connected to 0.

And finally another idea: If the ends of my intervals are multiples of
sqrt(2) and if I dont use overlapping intervals, but am satisfied if
every rational is covered once only. Then there cannot exist any
uncovered irrational that is incommensurable with sqrt(2). How about
that?

> >> Thus it makes no sense to say that 0 is the endpoint of
> >> a cluster, but not of any particular interval.

> >For the proof it does not make a difference whether the intervals are
> >connected or could be connected, as long as the limit is defined.
> >Important for my proof is only that every neighbourhood of the limit
> >contains points of intervals.

>
> Okay. In my example also, every neighborhood of  0 contains removed
> intervals, as well as intervals in C. My question is, why do you see a

The contradiction would occur if 0 was not the one and only limit
point. Every neighborhood of every of my cluster endpoints can contain
further cluster endpoints. But there must not be uncovered irrationals
without a cluster, and be it as small as you like, between them.

Regards, WM
>
>

Date Subject Author
6/1/12 Guest
6/1/12 Guest
6/1/12 W. Dale Hall
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Jürgen R.
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Jürgen R.
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Jürgen R.
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Jürgen R.
6/2/12 Jürgen R.
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Jürgen R.
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Uergil
6/3/12 Jürgen R.
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Uergil
6/2/12 Uergil
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Uergil
6/2/12 Uergil
6/2/12 Uergil
6/2/12 Uergil
6/2/12 W. Dale Hall
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 W. Dale Hall
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 dilettante
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Uergil
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Uergil
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 W. Dale Hall
6/2/12 mueckenh@rz.fh-augsburg.de
6/2/12 Uergil
6/3/12 Uergil
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Jürgen R.
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Jürgen R.
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Jürgen R.
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Jürgen R.
6/3/12 dilettante
6/3/12 Uergil
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Uergil
6/3/12 dilettante
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 Uergil
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 Uergil
6/4/12 dilettante
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 Uergil
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 dilettante
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 dilettante
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 dilettante
6/4/12 mueckenh@rz.fh-augsburg.de
6/4/12 Uergil
6/5/12 mueckenh@rz.fh-augsburg.de
6/5/12 Uergil
6/4/12 Uergil
6/4/12 Uergil
6/4/12 Uergil
6/6/12 Michael Press
6/3/12 Uergil
6/3/12 LudovicoVan
6/3/12 Uergil
6/3/12 Uergil
6/3/12 Uergil
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Uergil
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Uergil
6/2/12 Uergil
6/3/12 mueckenh@rz.fh-augsburg.de
6/3/12 Uergil
6/2/12 Uergil
6/1/12 Uergil