Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: Vindication of Goldbach's conjecture
Replies: 74   Last Post: Aug 9, 2012 6:50 PM

 Messages: [ Previous | Next ]
 Gus Gassmann Posts: 39 Registered: 9/11/09
Re: Vindication of Goldbach's conjecture
Posted: Jul 19, 2012 9:36 PM

On Thursday, 19 July 2012 20:57:27 UTC-3, lut...@gmail.com wrote:
> Le jeudi 19 juillet 2012 17:56:46 UTC+2, Timothy Murphy a écrit :
> &gt; luttgma@gmail.com wrote:
> &gt;
> &gt;
> &gt; &amp;gt; The question is, are all even integers the sum of two primes?
> &gt; &amp;gt; In other words, could an even integer be the sum of two uneven integers,
> &gt; &amp;gt; at least one of them not being a prime?
> &gt;
> &gt; These two statements do not seem to me to be equivalent.
>
> Yes, thank you, it would be better to limit the question to:
>
> Could an even integer be the sum of two uneven integers,
> at least one of them not being a prime?

Of course it could: 12 = 3 + 9. You need to show that for every even integer n *there exist* two odd integers, *both of them prime*, that add up to n.

Date Subject Author
6/6/12 mluttgens
6/6/12 Brian Q. Hutchings
6/6/12 GEIvey
6/7/12 Richard Tobin
6/8/12 mluttgens
6/8/12 Count Dracula
6/9/12 mluttgens
6/9/12 Brian Q. Hutchings
6/9/12 mluttgens
6/25/12 GEIvey
6/9/12 Richard Tobin
6/9/12 mluttgens
6/9/12 Richard Tobin
6/9/12 Brian Q. Hutchings
6/9/12 Brian Q. Hutchings
6/14/12 mluttgens
6/16/12 mluttgens
6/16/12 Frederick Williams
6/20/12 mluttgens
6/20/12 Rick Decker
6/21/12 mluttgens
6/21/12 Frederick Williams
6/21/12 mluttgens
6/22/12 mluttgens
6/22/12 mluttgens
6/22/12 Brian Q. Hutchings
6/25/12 Michael Stemper
6/26/12 mluttgens
6/26/12 Frederick Williams
6/28/12 Michael Stemper
7/19/12 mluttgens
7/19/12 Timothy Murphy
7/19/12 mluttgens
7/19/12 Gus Gassmann
7/20/12 mluttgens
8/1/12 Tim Little
8/4/12 mluttgens
8/4/12 Frederick Williams
8/6/12 mluttgens
8/6/12 gus gassmann
8/6/12 Brian Q. Hutchings
8/9/12 Pubkeybreaker
7/19/12 J. Antonio Perez M.
7/20/12 mluttgens
6/25/12 Michael Stemper
6/25/12 Thomas Nordhaus
6/17/12 mluttgens
6/17/12 quasi
6/18/12 Count Dracula
6/18/12 quasi
6/19/12 Count Dracula
6/19/12 quasi
6/20/12 mluttgens
6/22/12 Michael Stemper
6/22/12 mluttgens
6/22/12 Robin Chapman
6/22/12 Michael Stemper
6/23/12 mluttgens
6/22/12 Richard Tobin
6/22/12 Richard Tobin
6/25/12 Richard Tobin
6/25/12 Michael Stemper
6/14/12 Count Dracula
6/21/12 Luis A. Rodriguez
6/21/12 Brian Q. Hutchings
6/21/12 mluttgens
6/25/12 GEIvey
6/20/12 J. Antonio Perez M.