Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Education » math-teach

Topic: Non-Euclidean Arithmetic
Replies: 108   Last Post: Sep 13, 2012 3:39 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
kirby urner

Posts: 2,029
Registered: 11/29/05
Re: Non-Euclidean Arithmetic
Posted: Sep 3, 2012 12:09 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On Sun, Sep 2, 2012 at 6:27 PM, Paul Tanner <upprho@gmail.com> wrote:

<< snip >>

> Let's generalize this all the way from a field to a ringoid, so we can
> really see what's going on. A ringoid is simply a set under two binary
> operations such that they are "connected" with a distributive
> property, one of these operations distributing over the other. *By
> convention*, we call the one being distributed over "addition" and the
> other one "multiplication".
>


Note that when we linger around GCD, play more with primes, bigger
primes, do more with totatives, stray into Group Theory, I'm not
suggesting a full semester on those topics necessarily, as if "in for
a penny, in for a pound" is always operative. No, you can be in for a
penny, a quarter, five dollars, ten... i.e. your level of time/energy
investment in group theory / abstract algebra is controllable. You
don't have to get into "ringoids" just because you watched 'Lord of
the Rings' in your planetarium / movie theater (what every school has
by fictional 1999+).

>>
>> (a/b)(c/d) = a (bc/d) so you can always isolate an integer and then
>> say you're adding (bc/d) to itself a times.
>>

>
> But this is a serious redefinition of viewing "multiplication" as
> "repeated addition".
>


It may seem like radical surgery to you but I assure you the avid
teachers of the "repeated addition" meme took this step long ago. As
I was saying above, even your "scaling" which you present in cartoon
form *in contrast* to repeated addition, is just more repeated
addition (of some unit of vector / length / distance).

> Jump to
>> Reals.
>>

>
> I don't think so.
>
> Take e(pi).
>
> What does it mean to have pi *instances* of e or e *instances* of pi?
>


You have an ungodly huge Avogadro Number of atoms and you divvy them
so that 3.14159... of them (some trillions) get to be a "unit" in some
way, with respect to some multiplier. Numbers like pi and e are just
fractions that "never end" in this vague hand-wavy extension of Q to
R.


> Talk about having to bend over backwards to redefine things!
>


I think you're just culturally isolated and to you it's big news that
some people think this way.

>
> I'd say that we have to really redefine what it means to do something
> n "times".
>


Well, maybe we should really do that then.

In any case, I'm more interested in keeping it short, whatever we do.
The movie directors have trended towards short cutting and subject
change, with TV also pioneering in that direction. I don't want to be
a mile wide inch deep but nor do I want to be a mine shaft in the
wrong area, or any number of other poor designs i.e. there are many
more ways to get it wrong than right and "mile wide inch deep" is but
one of them.

So do some permutations, as an excuse to get good with hash tables
(Python's dict) more than anything, and touch on their closed nature
and the existence of group properties, and then move on. Come back to
group properties another time, when looking at totatives modulo N ala
'Vegetable Group Soup' segments **, and move on again, but take a few
moments to allude back and forth i.e. point out these bridges.

It's like Ikea (furniture store): there's the "long route" where you
see everything, and then you have these "short cuts" that connect you
in a kind of "hyperspace".

So in STEM we have our linear tracks, which don't go on and on for too
long, and their hypertext topologies (other ways of "stringing it
together").

Remember we have RSA (topic in crypto) to hit, still within the K12
sphere. Grades 13-16 provide time to go deeper, before hopping into
trucking (a business school gig) and then into some mix of management
and finance. You still draw on those crypto skills and some of the
products you work with are about routing trucks (an important area in
software development, especially with real time GPS getting involved).

Kirby


Date Subject Author
9/1/12
Read Non-Euclidean Arithmetic
Jonathan Crabtree
9/1/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/2/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/3/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/3/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/3/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/4/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/4/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/4/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/5/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/5/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/6/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/1/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/1/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/1/12
Read Re: Non-Euclidean Arithmetic
Wayne Bishop
9/1/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/2/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/3/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/3/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/5/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/3/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/3/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/5/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/3/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/3/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/4/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/5/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/5/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/5/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/5/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/5/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/5/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/5/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/5/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/5/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/6/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/8/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/7/12
Read Re: Non-Euclidean Arithmetic
Jonathan Crabtree
9/8/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/8/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/10/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/10/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/10/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/10/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/10/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/8/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/8/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/8/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/8/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/8/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/8/12
Read Re: Non-Euclidean Arithmetic
Jonathan Crabtree
9/9/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/8/12
Read Re: Non-Euclidean Arithmetic
Clyde Greeno @ MALEI
9/8/12
Read Re: Non-Euclidean Arithmetic
Jonathan Crabtree
9/8/12
Read Re: Non-Euclidean Arithmetic
Jonathan Crabtree
9/8/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/8/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/9/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/9/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/9/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Robert Hansen
9/10/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/10/12
Read Re: Non-Euclidean Arithmetic
Wayne Bishop
9/10/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/10/12
Read Re: Non-Euclidean Arithmetic
Clyde Greeno @ MALEI
9/9/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/9/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Wayne Bishop
9/9/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/10/12
Read Re: Non-Euclidean Arithmetic
Wayne Bishop
9/10/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/9/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/10/12
Read Re: Non-Euclidean Arithmetic
Clyde Greeno @ MALEI
9/10/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/10/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/10/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/10/12
Read Re: Non-Euclidean Arithmetic
Clyde Greeno @ MALEI
9/10/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/11/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/11/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/11/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/11/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/11/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/11/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/11/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/12/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/12/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/12/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/12/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/13/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/13/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/13/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/11/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/11/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/11/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/11/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/11/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/11/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/11/12
Read Re: Non-Euclidean Arithmetic
israeliteknight
9/11/12
Read Re: Non-Euclidean Arithmetic
Joe Niederberger
9/12/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/12/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/12/12
Read Re: Non-Euclidean Arithmetic
Paul A. Tanner III
9/12/12
Read Re: Non-Euclidean Arithmetic
kirby urner
9/11/12
Read Re: Non-Euclidean Arithmetic
Jonathan Crabtree

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.