Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: Cantor's first proof in DETAILS
Replies: 34   Last Post: Dec 1, 2012 10:56 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Uirgil

Posts: 183
Registered: 4/18/12
Re: Cantor's first proof in DETAILS
Posted: Nov 13, 2012 5:11 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

In article <k7udtq$np6$1@dont-email.me>,
"LudovicoVan" <julio@diegidio.name> wrote:

> "Uirgil" <uirgil@uirgil.ur> wrote in message
> news:uirgil-91F13B.13165013112012@BIGNEWS.USENETMONSTER.COM...
>

> > No values which are bounded below by a strictly increasing sequence and
> > bounded above by a strictly decreasing sequence are members of either
> > seequence.
> >
> > Thus proving that, given any sequence of values in R, there must be
> > values in R not appearing in that sequence.

>
> I'll have a look at Zuhair's follow-up as soon as I manage, but let me for
> now just point out that the above argument is obviously bogus: the rationals
> too are dense (have the IVP as Zuhair has called it) and, by the very same
> argument, we have proved that the rationals too are not countable... see?
>
> -LV
>


The difference being that a monotone but finitely bounded sequence of
rationals need not have a limit among the rationals but MUST have a
limit among the reals, a LUB or GLB.

Density is not enough distinguish between Q and R, but the GLB/ LUB
property is enough.

Any densely ordered interval of positive length having the GLB/LUB
property is uncountable.


Date Subject Author
11/12/12
Read Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/12/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/12/12
Read Re: Cantor's first proof in DETAILS
Charlie-Boo
11/12/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/13/12
Read Re: Cantor's first proof in DETAILS
Charlie-Boo
11/15/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
12/1/12
Read Re: Cantor's first proof in DETAILS
Frederick Williams
11/12/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/12/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/12/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/12/12
Read Re: Cantor's first proof in DETAILS
Shmuel (Seymour J.) Metz
11/12/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/13/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/13/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/13/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/13/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/13/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/13/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/13/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/13/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/13/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/13/12
Read Re: Cantor's first proof in DETAILS
Shmuel (Seymour J.) Metz
11/13/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/13/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/13/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/14/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/14/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/14/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/14/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/14/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/16/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/16/12
Read Re: Cantor's first proof in DETAILS
Uirgil
11/16/12
Read Re: Cantor's first proof in DETAILS
Zaljohar@gmail.com
11/16/12
Read Re: Cantor's first proof in DETAILS
LudovicoVan
11/13/12
Read Re: Cantor's first proof in DETAILS
Shmuel (Seymour J.) Metz

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.