Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Cantor's first proof in DETAILS
Replies: 85   Last Post: Dec 10, 2012 7:23 AM

 Messages: [ Previous | Next ]
 ross.finlayson@gmail.com Posts: 2,720 Registered: 2/15/09
Re: Cantor's first proof in DETAILS
Posted: Nov 30, 2012 11:42 PM

On Nov 30, 11:42 am, FredJeffries <fredjeffr...@gmail.com> wrote:
> On Nov 30, 8:39 am, "Ross A. Finlayson" <ross.finlay...@gmail.com>
> wrote:
>
>
>

> > > You've had this function for 13 years now and you STILL can't
> > > calculate the area of a triangle with it.

>
> > Fred Jeffries who I respect:  I'd like to think that's in the context
> > of modeling Dirac's delta with triangles or radial basis functions,
> > but what's important to describe of EF as plotted is this:  removing
> > all the space between the integers and plotting the elements in the
> > range it would look like f(x) = x from zero to one, half a square and
> > a triangle, but the F-Sigma Lebesgue integral of EF evaluates to one
> > not one half, now that's the surprise.

>
> > EF:  CDF:  of the uniform distribution of the natural integers.
>
> Sorry, I can't decipher the above two paragraphs. All I see is
> 13 years and 3 math degrees and still can't calculate the
> area of a triangle

The area of a triangle is base times height over two.

A CDF ranges from zero to one over the range of the elements in the
statistical/probabilistic distribution and is increasing. A uniform
discrete distribution would have for any m, n that CDF(m+1) - CDF(m) =
CDF(n+1) - CDF(n), constant monotone. Where EF is this CDF,
putatively, 1/d = 1/d which is true, satisfying these requirements.

The notion of a uniform probability distribution over all the naturals
is not necessarily intuitive, and I described how to build one in ZFC
besides that EF has the concomitant properties of being the CDF of a
uniform distribution of the naturals.

The reference to real functions modeling Dirac's delta a.k.a. the unit
impulse function is that this function is a spike to infinity at zero,
zero elsewhere as defined in the reals, whose integral evaluates to
one. It's standardly modeled as triangles or radial basis functions
or any other function really that have area equal to one and
diminishes to point width at zero as parameterized by an unbounded
free variable. Similarly Heaviside's step is so modeled with a
parameterized arctan() and etcetera.

Here, EF's family of functions so modeling it is simply parameterized
by d as it is unbounded.

Then, I went deeper to the foundations than that. Simply working up a
mutual definition of the real numbers as constructively at once
complete ordered field, and, partially ordered ring, with, rather
restricted transfer principle, as for example we know from Cauchy/
Weierstrass and Bishop/Cheng, then, it's possible to have the
comprehension of the function as a: primitive function, in fact
_defining_ the unit line segment. A corresponding geometry of points
and spaces to complement Euclid's of points and lines is initially
defined, with a fundamental space-filling curve defining shapes via
simple properties.

Then of course there are the set-theoretic results extra the number-
theoretic results re: cardinality, an axiomless system of natural
deduction with natural definitions of sets and ordinals following
deductively gives a theory with an empty and universal set in the
dually-self-infraconsistent dialetheic and paraconsistent.

So, yeah, in the time between noting the simple construction of EF and
today, there's quite a bit of development. Dogged determination, as
it were, for me partially satisfied in a great appreciation of the
fundamental philosophical tenets.

No, I only have a Bachelor's of Science degree (in mathematics thank
you and I know computer science). The guy who wrote a dissertation to
convince soi-disant set theorists that half the integers are even has
a Ph.D. from M.I.T. He got it for writing a dissertation in set
theory that half of the integers are even.

I wonder your familiarity with Nyquist, Shannon, Huffman et alia and
how Nyquist's sampling theorems in the discrete would apply, here to
the continuous or to sets dense in the real numbers. I don't know of
much work in that area.

And Fred Jeffries, I respect you even where you claim not to make
sense of this, thank you please for not making no sense of it.

Basically these notions are very fundamental to what is continuous and
what is discrete.

So, matter as the atom is particle and wave. What then is our simple
point?

Regards,

Ross Finlayson

Date Subject Author
11/25/12 ross.finlayson@gmail.com
11/25/12 Virgil
11/25/12 ross.finlayson@gmail.com
11/25/12 Graham Cooper
11/25/12 ross.finlayson@gmail.com
11/25/12 Virgil
11/25/12 ross.finlayson@gmail.com
11/26/12 Virgil
11/26/12 ross.finlayson@gmail.com
11/26/12 Virgil
11/26/12 ross.finlayson@gmail.com
11/26/12 Virgil
11/27/12 ross.finlayson@gmail.com
11/27/12 Virgil
11/27/12 ross.finlayson@gmail.com
11/27/12 Virgil
11/27/12 ross.finlayson@gmail.com
11/28/12 Virgil
11/28/12 ross.finlayson@gmail.com
11/28/12 Virgil
11/28/12 ross.finlayson@gmail.com
11/28/12 Virgil
11/29/12 ross.finlayson@gmail.com
11/29/12 Virgil
11/29/12 ross.finlayson@gmail.com
11/30/12 Virgil
11/30/12 FredJeffries@gmail.com
11/30/12 ross.finlayson@gmail.com
11/30/12 FredJeffries@gmail.com
11/30/12 ross.finlayson@gmail.com
12/1/12 Virgil
11/30/12 ross.finlayson@gmail.com
12/1/12 Virgil
12/1/12 ross.finlayson@gmail.com
12/1/12 Virgil
12/1/12 FredJeffries@gmail.com
12/1/12 ross.finlayson@gmail.com
12/1/12 Virgil
12/2/12 ross.finlayson@gmail.com
12/2/12 Virgil
12/2/12 ross.finlayson@gmail.com
12/2/12 Virgil
12/3/12 ross.finlayson@gmail.com
12/3/12 Virgil
12/3/12 Virgil
12/3/12 ross.finlayson@gmail.com
12/3/12 Virgil
12/3/12 ross.finlayson@gmail.com
12/4/12 Virgil
12/4/12 ross.finlayson@gmail.com
12/4/12 Virgil
12/4/12 ross.finlayson@gmail.com
12/4/12 ross.finlayson@gmail.com
12/4/12 Virgil
12/4/12 Virgil
12/4/12 Virgil
12/5/12 ross.finlayson@gmail.com
12/6/12 Virgil
12/7/12 ross.finlayson@gmail.com
12/7/12 Virgil
12/8/12 ross.finlayson@gmail.com
12/9/12 Virgil
12/9/12 ross.finlayson@gmail.com
12/9/12 Virgil
12/9/12 ross.finlayson@gmail.com
12/9/12 ross.finlayson@gmail.com
12/9/12 Virgil
12/9/12 ross.finlayson@gmail.com
12/9/12 Virgil
12/9/12 ross.finlayson@gmail.com
12/9/12 Virgil
12/9/12 ross.finlayson@gmail.com
12/10/12 Virgil
12/10/12
12/4/12 Virgil
12/5/12 ross.finlayson@gmail.com
12/5/12 Virgil
11/30/12 Virgil
11/25/12 Graham Cooper
11/25/12 Virgil
11/25/12 ross.finlayson@gmail.com
11/25/12 Virgil