Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Interpretation of coefficients in multiple regressions which model
linear dependence on an IV

Replies: 146   Last Post: Dec 15, 2012 6:44 PM

 Messages: [ Previous | Next ]
 Halitsky Posts: 600 Registered: 2/3/09
Bonferroni tables for p’s from new 2-ways for Auq
per fold and length interval

Posted: Dec 1, 2012 10:51 AM

Below are the Bonferroni tables for p?s from the new Subset/Method 2-
ways for Auq per fold and length interval. Since there are 6 folds
and 12 length intervals, the number of Bonferroni entries is 72 per
method comparison (1:R1, 2:R2, or 3:R3.)

It?s clear that method 2 does better by far than method 1 or 3. (From
the CI plots of R?uq that we were just discussing, it was to be
expected that either method 1 or 2 or both would be ?good?, but
certainly not method 3; hence, the Bonferroni tables below are not
inconsistent with the CI plots previously exhibited.)

It?s also clear from the 2:R2 table that folds a1, b1, c1, c2 all
exhibit reliable behavior of Auq in regression Ruq at 2-5 different
length intervals each:

a1: 10,11
b1: 6,7
c1: 4,7,9,10,12
c2: 8,10,11,12

To put this point another way, we can use the residuals of Ruq for
these folds and length intervals to construct logistic regression
predictors with LESS worry that we are merely buidling dream-castles
on top of statistically unjustified sand-castles.

On the other hand, the following tables also make it clear folds b47
and a3 exhibit no reliable behavior of Auq in regression Ruq for any
length interval.

But - following up on a suggestion you raised some time ago, I want to
recompute the Bonferroni tables with just (a1,a3) entries grouped
together, just (b1,b47) entries grouped together, and jsut (c1,c2)
entries grouped together. Not only will this reduced the number of
Bonferroni entries per table from 72 to 24, but will also indicate the
extent to which: i) our two alpha folds (a1,a3) are like each other);
ii) our two beta folds (b1,b47) are like each other; iii) our two
alpha-beta folds (c1,c2) are like each other. I will post these nine
new Bonferroni tables (3 pairs of folds times three method
interactions) in my next post.

Thanks again as always for your continued consideration of these
matters. I hope that you agree with what I?ve said above ...

Bonferroni Tables for p's from
Auq Subset/Method 2-way Interactions
at Each Fold and Each Length Interval

Methods: 2,R2

Interaction
Category = (p(j)*
Methods_ p(j)* (72-j))
j Fold_LI p(j) (72-j) - 0.05

1 2:R2_c2_10 1.69E-07 0.000 -0.050
2 2:R2_c2_12 3.35E-06 0.000 -0.050
3 2:R2_c1_9 2.04E-05 0.001 -0.049
4 2:R2_b1_7 2.94E-05 0.002 -0.048
5 2:R2_c1_7 6.01E-05 0.004 -0.046
6 2:R2_c2_11 6.85E-05 0.005 -0.045
7 2:R2_c1_4 8.62E-05 0.006 -0.044
8 2:R2_a1_10 1.33E-04 0.009 -0.041
9 2:R2_c1_10 1.70E-04 0.011 -0.039
10 2:R2_a1_11 2.35E-04 0.015 -0.035
11 2:R2_b1_6 3.87E-04 0.024 -0.026
12 2:R2_c1_12 6.92E-04 0.042 -0.008
13 2:R2_c2_8 7.14E-04 0.042 -0.008
14 2:R2_b1_8 1.46E-03 0.085 0.035
15 2:R2_b1_5 1.63E-03 0.093 0.043
16 2:R2_b1_11 2.18E-03 0.122 0.072
17 2:R2_c1_11 4.22E-03 0.232 0.182
18 2:R2_b1_12 4.51E-03 0.243 0.193
19 2:R2_a3_7 4.62E-03 0.245 0.195
20 2:R2_c2_5 5.73E-03 0.298 0.248
21 2:R2_c1_6 6.28E-03 0.320 0.270
22 2:R2_b47_6 7.73E-03 0.386 0.336
23 2:R2_c2_9 8.79E-03 0.431 0.381
24 2:R2_a3_10 1.19E-02 0.573 0.523
25 2:R2_c2_6 1.39E-02 0.652 0.602
26 2:R2_b47_4 1.63E-02 0.749 0.699
27 2:R2_a1_8 2.05E-02 0.920 0.870
28 2:R2_b47_7 2.08E-02 0.913 0.863
29 2:R2_a1_5 2.09E-02 0.901 0.851
30 2:R2_b1_10 2.14E-02 0.899 0.849
31 2:R2_a1_2 2.74E-02 1.124 1.074
32 2:R2_b1_4 2.95E-02 1.179 1.129
33 2:R2_c1_8 2.96E-02 1.154 1.104
34 2:R2_b1_3 3.35E-02 1.275 1.225
35 2:R2_b1_9 4.23E-02 1.565 1.515
36 2:R2_c1_5 4.39E-02 1.582 1.532

... ... ... ... ...

(entries with p(j) >= .05 not shown)

Methods: 1,R1

Interaction
Category = (p(j)*
Methods_ p(j)* (72-j))
j Fold_LI p(j) (72-j) - 0.05

1 1:R1_b1_9 4.42E-05 0.003 -0.047
2 1:R1_b47_9 2.73E-03 0.191 0.141
3 1:R1_a3_3 4.37E-03 0.302 0.252
4 1:R1_a3_6 4.42E-03 0.301 0.251
5 1:R1_c2_10 4.99E-03 0.334 0.284
6 1:R1_b1_11 5.05E-03 0.334 0.284
7 1:R1_a1_1 8.97E-03 0.583 0.533
8 1:R1_c1_9 1.14E-02 0.728 0.678
9 1:R1_c2_12 1.62E-02 1.023 0.973
10 1:R1_c2_2 1.67E-02 1.034 0.984
11 1:R1_c1_5 1.94E-02 1.184 1.134
12 1:R1_c1_12 2.16E-02 1.295 1.245
13 1:R1_b1_12 2.40E-02 1.416 1.366
14 1:R1_b1_10 2.70E-02 1.566 1.516
15 1:R1_c2_11 3.51E-02 2.001 1.951
16 1:R1_b1_7 3.88E-02 2.173 2.123
17 1:R1_b1_2 4.87E-02 2.678 2.628
... ... ... ... ...

(entries with p(j) >= .05 not shown)

Methods: 3,R3

Interaction
Category = (p(j)*
Methods_ p(j)* (72-j))
j Fold_LI p(j) (72-j) - 0.05

1 3:R3_b1_uA_1 3.12E-05 0.002 -0.048
2 3:R3_b47_uA_12 2.24E-04 0.016 -0.034
3 3:R3_b47_uA_5 1.25E-03 0.086 0.036
4 3:R3_c2_uA_3 1.86E-03 0.127 0.077
5 3:R3_a1_uA_10 4.72E-03 0.316 0.266
... ... ... ... ...

(entries with p(j) >= .05 not shown)

Date Subject Author
11/21/12 Halitsky
11/21/12 Halitsky
11/22/12 Ray Koopman
11/22/12 Halitsky
11/23/12 Ray Koopman
11/23/12 Halitsky
11/23/12 Halitsky
11/24/12 Ray Koopman
11/24/12 Halitsky
11/24/12 Halitsky
11/25/12 Halitsky
11/26/12 Ray Koopman
11/26/12 Ray Koopman
11/26/12 Halitsky
11/27/12 Ray Koopman
11/27/12 Halitsky
11/27/12 Ray Koopman
11/28/12 Ray Koopman
11/28/12 Halitsky
11/27/12 Halitsky
11/27/12 Ray Koopman
11/27/12 Halitsky
11/27/12 Ray Koopman
11/27/12 Halitsky
11/27/12 Halitsky
11/27/12 Ray Koopman
11/28/12 Halitsky
11/28/12 Halitsky
11/28/12 Ray Koopman
11/28/12 Halitsky
11/29/12 Halitsky
11/30/12 Ray Koopman
12/2/12 Ray Koopman
12/2/12 Ray Koopman
12/2/12 Halitsky
12/2/12 Ray Koopman
12/2/12 Halitsky
12/2/12 Halitsky
12/2/12 Halitsky
12/2/12 Halitsky
12/3/12 Halitsky
11/30/12 Halitsky
11/30/12 Ray Koopman
12/1/12 Halitsky
12/1/12 Ray Koopman
12/1/12 Halitsky
12/1/12 Halitsky
12/1/12 Halitsky
12/1/12 Halitsky
12/5/12 Halitsky
12/5/12 Halitsky
12/5/12 Halitsky
12/5/12 Halitsky
12/5/12 Ray Koopman
12/6/12 Halitsky
12/7/12 Ray Koopman
12/7/12 Halitsky
12/7/12 Ray Koopman
12/7/12 Halitsky
12/7/12 Halitsky
12/7/12 Halitsky
12/7/12 Halitsky
12/7/12 Halitsky
12/7/12 Ray Koopman
12/7/12 Halitsky
12/7/12 Halitsky
12/7/12 Ray Koopman
12/7/12 Halitsky
12/8/12 Ray Koopman
12/8/12 Ray Koopman
12/8/12 Halitsky
12/9/12 Halitsky
12/8/12 Halitsky
12/8/12 Halitsky
12/8/12 Halitsky
12/9/12 Halitsky
12/9/12 gimpeltf@hotmail.com
12/9/12 Halitsky
12/9/12 Halitsky
12/10/12 Ray Koopman
12/10/12 Halitsky
12/10/12 Ray Koopman
12/10/12 Halitsky
12/10/12 Halitsky
12/11/12 Ray Koopman
12/11/12 Halitsky
12/10/12 Halitsky
12/11/12 Halitsky
12/11/12 Halitsky
12/11/12 Ray Koopman
12/11/12 Halitsky
12/12/12 Ray Koopman
12/12/12 Halitsky
12/13/12 Ray Koopman
12/13/12 Halitsky
12/13/12 Ray Koopman
12/13/12 Halitsky
12/14/12 Ray Koopman
12/14/12 Halitsky
12/13/12 Halitsky
12/13/12 Ray Koopman
12/14/12 Halitsky
12/14/12 Ray Koopman
12/14/12 Halitsky
12/14/12 Ray Koopman
12/14/12 Halitsky
12/14/12 Halitsky
12/14/12 Ray Koopman
12/14/12 Halitsky
12/14/12 Ray Koopman
12/15/12 Ray Koopman
12/15/12 Halitsky
12/15/12 Halitsky
12/15/12 Ray Koopman
12/14/12 Halitsky
12/14/12 Ray Koopman
12/14/12 Halitsky
12/1/12 Ray Koopman
12/1/12 Halitsky
12/1/12 Ray Koopman
12/1/12 Halitsky
12/2/12 Ray Koopman
12/2/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Halitsky
12/3/12 Ray Koopman
12/4/12 Halitsky
12/4/12 Halitsky
12/4/12 Ray Koopman
12/4/12 Halitsky
12/4/12 Ray Koopman
12/5/12 Halitsky
12/4/12 Halitsky
12/4/12 Ray Koopman
12/4/12 Halitsky
12/5/12 Halitsky
12/5/12 Ray Koopman
12/5/12 Halitsky
12/4/12 Halitsky
12/4/12 Halitsky
12/4/12 Ray Koopman