
Re: Cantor's first proof in DETAILS
Posted:
Dec 1, 2012 4:24 PM


On Dec 1, 8:49 am, FredJeffries <fredjeffr...@gmail.com> wrote: > On Nov 30, 8:42 pm, "Ross A. Finlayson" <ross.finlay...@gmail.com> > wrote: > > > > > No, I only have a Bachelor's of Science degree (in mathematics thank > > you and I know computer science). The guy who wrote a dissertation to > > convince soidisant set theorists that half the integers are even has > > a Ph.D. from M.I.T. He got it for writing a dissertation in set > > theory that half of the integers are even. > > I have no time for nor interest in your faux postmodern gibberish. I > only wish to point our that Fred Katz's dissertation did NOT show that > "half the integers are even". The interesting thing about the paper > was that he was unable to determine whether There are "the same > number" of even natural numbers as odd or whether there is one more > even than odd. > > http://arxiv.org/abs/math/0106100 > > See also Matthew W Parker "Set Size and the PartWhole Principle" > and references therein where he demonstrates that methods like Katz's > "must be either very weak and narrow or largely arbitrary and > misleading":http://philpapers.org/rec/PARSSA3
Well great, sure then that goes back to our discussion of whether "exactly half the integers are even" or in as to whether "give or take one element, of the infinitely many, exactly half of the integers are even, and given an arbitrary method of selecting an integer with no prior expectations, it is as or more reasonable than any other course that the estimate is that half of those selected would be even."
Simply, half of the integers are even.
It would seem there would be more use of the modern concrete mathematics, in number theory and in asymptotics, to constructively build the partwhole principle than to aver that it's Euclid's and not explored in recent history.
Parker: "And while the _exploration_ of [...] theories of size is certainly enlightening, one of the things it ultimately reveals is how limited [...] sizes themselves are by their unavoidable arbitrariness. This is not to say they are useless altogether; as noted they may well have special applications to probability and number theory. However, anyone who has hoped for a revolutionary new [...] theory of set size with breadth and informativeness approaching what we would expect from a notion of _how many_ will ultimately be disappointed."
Concrete mathematics has applications of this simply today, and indeed ready applications abound. Finite combinatorics is complete, and: unbounded.
"One might object that language always involves haphazard stipulations, but this is mainly in the choice of symbols used. Where the concepts expressed are also somewhat arbitrary (like the culinary distinction between fruits and vegetables, for example), this again limits their usefulness and scientific interest."
Then, Parker goes about describing that sets, as their elements are plotted on their supersets with regular structure as they are constructed, have simple translations where the "same" elements have different sizes as a collection, but those aren't exactly the "same" elements, _in the context of their being in the overall context_. For example, shifting or translating the integers from the origin one right, leaves not the same set of integers, for what they are objects, defining the set by its elements.
"So unless we want the size of a set to depend on its particular position (even while holding the relative positions of the elements fixed), or perhaps on the bare haecceities of its elements (if there are such things), we should like ATI to hold. And for Euclidean sizes it can?t."
It can't. So, Schnirelmann and number theory give us that half of the integers are even, and Katz' result is that proper subsets are demonstrably smaller than their supersets, _in all their supersets_, in modern theory, fine. Thank you for clearing up that his direct statement is to that effect, and that the even integers soundly have a size less than that of all the integers, in the integers, follows from further development. Here, it supports that no other rational number, than one half, best describes how many of the integers are even. Thanks, Fred.
I promoted that notion, proper subsets are lesser than their subsets, and was roundly derided, until I pointed them to Katz' Ph.D, from M.I.T. Now also I'll direct them to Euclid.
Were they wrong before, or after? Or, were they just ignorant? Were they arguing the point, or the poster? Did they learn, or were they taught? Are just fools, or just fooled? Does it matter anyways because there's no use for transfinite cardinals? (And measure theory is plainly countable and defined by our rules of the integral calculus in the fundamental theorems of calculus, standardly.)
Then, with regards to the text, that's clear and rather plain, it's readable, you get gibberish. Read what you read, this is a statement. And that's technical, and correct.
So, whatever you read of it, here's some more.
Thank you, that's good reading and I enjoy it.
http://arxiv.org/abs/math/0106100 http://philpapers.org/rec/PARSSA3
And then yes thank you I generally respect all and have a high respect for Jeffries.
So, particle and wave: point?
Regards,
Ross Finlayson

