The Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Math Forum » Discussions » sci.math.* » sci.math

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: What are sets? again
Replies: 21   Last Post: Dec 9, 2012 10:12 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]

Posts: 1,635
Registered: 2/27/06
Re: What are sets? again
Posted: Dec 2, 2012 2:28 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On Nov 30, 1:17 pm, Zuhair <> wrote:
> The following is an account about what sets are, first I'll write the
> exposition of this base theory in brief, then I'll discuss some
> related issues.
> Language: FOL + P, Rp
> P stands for "is part of"
> Rp stands for "represents"
> Axioms: Identity theory axioms +
> I.  Part-hood: P partially orders the universe.
> ll. Supplementation: x P y & ~ y P x -> Exist z. z P y & ~ x P z.
> Def.) atom(x) <-> for all y. y P x -> x P y
> Def.) x atom of y <-> atom(x) & x P y.
> Def.) c is a collection of atoms iff for all y. y P c -> Exist z. z
> atom of y.
> Def.) c is atomless <-> ~ Exist x. x atom of c
> lll. Representation: x Rp c & y Rp d -> (x=y<->c=d)
> lV. Representatives: x Rp c -> atom(x)
> V. Null: Exist! x. (Exist c. x Rp c & c is atomless).
> A Set is an atom that uniquely represents a collection of atoms or
> absence of atoms.
> Def.) Set(x) <-> Exist c. (c is a collection of atoms or c is
> atomless) & x Rp c & atom(x)
> Here in this theory because of lV there is no need to mention atom(x)
> in the above definition.
> Set membership is being an atom of a collection of atoms that is
> uniquely represented by an atom.
> Def.) x e y iff Exist c. c is a collection of atoms & y Rp c & x atom
> of c & atom(y)
> Here in this theory because of lV there is no need to mention atom(y)
> in the above definition.
> Vl. Composition: if phi is a formula in which y is free but x not,
> then
> [Exist y. atom(y) & phi] -> [Exist x. x is a collection of atoms &
> (for all y. y atom of x <-> atom(y) & phi)] is an axiom.
> Vll. Pairing: for all atoms c,d Exist x for all y. y e x <-> y=c or
> y=d
> /
> This theory can interpret second order arithmetic. And I like to think
> of it as a base theory on top of which any stronger set theory can
> have its axioms added to it relativized to sets and with set
> membership defined as above, so for example one can add all ZFC axioms
> in this manner, and the result would be a theory that defines a model
> of ZFC, and thus proves the consistency of ZFC. Anyhow this would only
> be a representation of those theories in terms of different
> primitives, and it is justified if one think of those primitives as a
> more natural than membership, or if one think that it is useful to
> explicate the later. Moreover this method makes one see the Whole
> Ontology involved with set\class theories, thus the bigger picture
> revealed! This is not usually seen with set theories or even class
> theories as usually presented, here one can see the interplay between
> sets and classes (collections of atoms), and also one can easily add
> Ur-elements to this theory and still be able to discriminate it from
> the empty set at the same time, a simple approach is to stipulate the
> existence of atoms that do not represent any object. It is also very
> easy to explicate non well founded scenarios here in almost flawless
> manner. Even gross violation of Extensionality can be easily
> contemplated here. So most of different contexts involved with various
> maneuvering with set\class theories can be easily
> paralleled here and understood in almost naive manner.
> In simple words the above approach speaks about sets as being atomic
> representatives of collections (or absence) of atoms, the advantage is
> clearly of obtaining a hierarchy of objects. Of course an atom here
> refers to indivisible objects with respect to relation P here, and
> this is just a descriptive atom-hood that depends on discourse of this
> theory, it doesn't mean true atoms that physically have no parts, it
> only means that in the discourse of this theory there
> is no description of proper parts of them, so for example one can add
> new primitive to this theory like for example the primitive "physical"
> and stipulate that any physical object is an atom, so a city for
> example would be an atom, it means it is descriptively an atom as far
> as the discourse of this theory is concerned, so atom-hood is a
> descriptive modality here. From this one can understand that a set is
> a way to look at a collection of atoms from atomic perspective, so the
> set is the atomic representative of that collection, i.e. it is what
> one perceives when handling a collection of atoms as one descriptive
> \discursive whole, this one descriptive\discursive whole is actually
> the atom that uniquely represents that collection of atoms, and the
> current methodology is meant to capture this concept.
> Now from all of that it is clear that Set and Set membership are not
> pure mathematical concepts, they are actually reflecting a
> hierarchical interplay of the singular and the plural, which is at a
> more basic level than mathematics, it is down at the level of Logic
> actually, so it can be viewed as a powerful form of logic, even the
> added axioms to the base theory above like those of ZFC are really
> more general than being mathematical and even when mathematical
> concepts are interpreted in it still the interpretation is not
> completely faithful to those concepts. However this powerful logical
> background does provide the necessary Ontology required for
> mathematical objects to be secured and for
> their rules to be checked for consistency.
> But what constitutes mathematics? Which concepts if interpreted in the
> above powerful kind of logic would be considered as mathematical? This
> proves to be a very difficult question. I'm tending to think that
> mathematics is nothing but "Discourse about abstract structure", where
> abstract structure is a kind of free standing structural universal.
> Anyhow I'm not sure of the later. I don't think anybody really
> succeeded with carrying along such concepts.
> Zuhair

All you need to do is to say that every FOL wff with a free variable
defines a set and then what are the base relations. "x is an element
of y" is not a relation, which you can say explicitly or leave it out
and so it is not implicitly. If you want to generate incompleteness
statements (e.g. Godel/Rosser/Smullyan or Turing Halting Problem) then
you need to specify it explicitly.

This would imply that subsets, unions, intersections, complement etc.
are all sets since they are represented as FOL wffs.

Defining "class" is folly. They don't exist and they don't solve
anything. It is just "kicking the can down the road." Your next
problem is whether or not the class of classes that don't contain
themselves contains itslef, and that is talking about something that
is totally arbitrary and artificial in the first place!

In every axiomatization that I have developed (about 6) whenever there
is incompleteness (2 or 3) it is axiomatized by a single axiom. This
resolves paradoxes and even lets you generate them. In one contrived
axiomatization every theorem is an incompleteness theorem (include the


Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.