Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Given a set , is there a disjoint set with an arbitrary cardinality?
Replies: 28   Last Post: Dec 4, 2012 5:50 PM

 Messages: [ Previous | Next ]
 Spammer Posts: 1 Registered: 12/4/12
Re: Given a set , is there a disjoint set with an arbitrary cardinality?
Posted: Dec 4, 2012 5:50 PM

On 04.12.2012 17:37, Shmuel (Seymour J.) Metz wrote:
> In<Pine.NEB.4.64.1212040145340.21656@panix3.panix.com>, on 12/04/2012
> at 02:01 AM, William Elliot<marsh@panix.com> said:
>

>> Case |X|< k. Let Y be a set with |Y| = k.
>> |Y\X| = k; Y\X and X are disjoint.

>
> That doesn't work if k is finite.
>

You are right. But for finite k the situation is trivial.

Date Subject Author
12/3/12 jaakov
12/3/12 forbisgaryg@gmail.com
12/3/12 Aatu Koskensilta
12/3/12 jaakov
12/3/12 Carsten Schultz
12/3/12 jaakov
12/3/12 Aatu Koskensilta
12/3/12 jaakov
12/3/12 Aatu Koskensilta
12/3/12 jaakov
12/3/12 Carsten Schultz
12/3/12 jaakov
12/3/12 Aatu Koskensilta
12/3/12 Butch Malahide
12/3/12 jaakov
12/3/12 Butch Malahide
12/4/12 jaakov
12/4/12 forbisgaryg@gmail.com
12/4/12 William Elliot
12/4/12 forbisgaryg@gmail.com
12/4/12 William Elliot
12/4/12 William Elliot
12/4/12 jaakov
12/4/12 William Elliot
12/4/12 jaakov
12/4/12 Shmuel (Seymour J.) Metz
12/4/12 Spammer
12/4/12 jaakov