Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: fom - 11 - definition of proposition
Replies: 1   Last Post: Dec 11, 2012 9:35 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
fom

Posts: 1,968
Registered: 12/4/12
fom - 11 - definition of proposition
Posted: Dec 8, 2012 6:22 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply


The ortholattice





TRU

/ \
/ \
/ \
/ \
/ \
/ \

NO ALL

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

OTHER SOME

\ /
\ /
\ /
\ /
\ /
\ /

THIS




is a sublattice of the one constructed
from our line names.


Let A be some linguistic expression.


The expressions:


A
NOR(A,A)
NOR(NOR(A,NOR(A,A)),NOR(A,NOR(A,A)))
NOR(NOR(A,A),NOR(NOR(A,A),NOR(A,A)))


label vertices in a lattice corresponding
to the free DeMorgan algebra on one
generator:



TRU

|
|
|

NOR(NOR(A,NOR(A,A)),NOR(A,NOR(A,A)))

/ \
/ \
/ \

A NOR(A,A)

\ /
\ /
\ /

NOR(NOR(A,A),NOR(NOR(A,A),NOR(A,A)))

|
|
|

NTRU.




Then, A is a proposition if and only if all
maps from the free DeMorgan algebra generated
from A into the sublattice from our
20-element ortholattice has

TRU --> TRU
NOR(NOR(A,NOR(A,A)),NOR(A,NOR(A,A))) --> TRU

NTRU --> THIS
NOR(NOR(A,A),NOR(NOR(A,A),NOR(A,A))) --> THIS

and one of

A --> ALL
NOR(A,A) --> OTHER

A --> SOME
NOR(A,A) --> NO

A --> OTHER
NOR(A,A) --> ALL

A --> NO
NOR(A,A) --> SOME










Note that the top and bottom correspond to
the ideal points significant to the topology
on the connectivity algebra.





Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.