
Re: A Point on Understanding
Posted:
Dec 30, 2012 3:16 AM


On Sat, Dec 29, 2012 at 9:52 PM, kirby urner <kirby.urner@gmail.com> wrote: >> >> This feeble attempt to change the subject won't work. The context here >> is denial of mathematical theorems, pure and simple. There is no >> debate in the denial of a theorem. >> > > So my I conclude you're against this strategy of arguing pro and con a > mathematical proposition?
No, and in my last post
http://mathforum.org/kb/message.jspa?messageID=7944754
I communicated so:
Quote:
"And I'm talking denial of theorems here, not some "I don't understand how this theorem can be true". One's ability or inability to understand how a theorem is true is not a legitimate measure of whether a theorem is in fact a theorem. Using the latter to try to justify the former is what a mathematical crank (crackpot) does  and oh yeah, there are a lot of them out there, and yes, some of them can even be trained in science and mathematics:
http://books.google.com/books/about/Mathematical_Cranks.html?id=HqeoWPsIH6EC
"Every discipline has its crackpots: Stories of mathematics" http://blogs.msdn.com/b/oldnewthing/archive/2006/05/29/610090.aspx
http://en.wikipedia.org/wiki/Crank_(person)
One of the responsibilities of [a] teacher [is] to teach his or her students how to think such that they can avoid becoming cranks.
Sure, one can engage in free inquiry and "let us reason together" all one wants, but there is a responsibility here, and that is to have a respect for fact, for what is really true, and to accept it, and not to deny it.
Unfortunately, since the Internet is one whale of a breeding ground for this bane of humanity, this crackpotism, factdenial is becoming more and more prevalent, and this denial of fact is happening in all forms whether it is mathematics denial or science denial or whatever. People more and more seem to think that making up one's own facts is part of what it means to be a thinker."
This "arguing pro and con" is fine as long as theorems and proofs are not denied  if it's only a pedagogical technique for introducing theorems and proofs, then OK. But if the agenda is to deny mathematical theorems and proofs, then it's not fine  it's not fine if this "pedagogical technique" is a smokescreen for denying these facts.
> Surely you're not suggesting mathematics should be presented as free > from controversy, as that would go against the historical facts.
There is no more controversy once the issue is settled via proof and thus the theorems are established. Crackpots deny the theorems and proofs, while wrongly thinking that whatever controversy existed still exists.
Perhaps your students and you need to see this:
http://en.wikipedia.org/wiki/Defect_(geometry)
Quote:
"Descartes' theorem
Descartes' theorem on the "total defect" of a polyhedron states that if the polyhedron is homeomorphic to a sphere (i.e. topologically equivalent to a sphere, so that it may be deformed into a sphere by stretching without tearing), the "total defect", i.e. the sum of the defects of all of the vertices, is two full circles (or 720[degrees] or 4pi radians). The polyhedron need not be convex.[1]
A generalization says the number of circles in the total defect equals the Euler characteristic of the polyhedron. This is a special case of the GaussBonnet theorem which relates the integral of the Gaussian curvature to the Euler characteristic. Here the Gaussian curvature is concentrated at the vertices: on the faces and edges the Gaussian curvature is zero and the Gaussian curvature at a vertex is equal to the defect there.
This can be used to calculate the number V of vertices of a polyhedron by totaling the angles of all the faces, and adding the total defect. This total will have one complete circle for every vertex in the polyhedron. Care has to be taken to use the correct Euler characteristic for the polyhedron."
http://en.wikipedia.org/wiki/Gauss%E2%80%93Bonnet_theorem
Quote:
"Polyhedra Main article: Descartes' theorem on total angular defect
Descartes' theorem on total angular defect of a polyhedron is the polyhedral analog: it states that the sum of the defect at all the vertices of a polyhedron which is homeomorphic to the sphere is 4(pi). More generally, if the polyhedron has Euler characteristic X = 2  2g (where g is the genus, meaning "number of holes"), then the sum of the defect is 2(pi)X. This is the special case of GaussBonnet, where the curvature is concentrated at discrete points (the vertices).
Thinking of curvature as a measure, rather than as a function, Descartes' theorem is GaussBonnet where the curvature is a discrete measure, and GaussBonnet for measures generalizes both GaussBonnet for smooth manifolds and Descartes' theorem."

