Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
Drexel University or The Math Forum.



Re: equivalence of truth of Riemann hypothesis
Posted:
Jan 5, 2013 11:30 AM


Op zaterdag 5 januari 2013 17:06:11 UTC+1 schreef David Bernier het volgende: > On 01/05/2013 09:55 AM, Jean Dupont wrote: > > > In the book "Math goes to the movies" it is stated that the truth of the Riemann hypothesis is equivalent to the following statement: > > > $\exists C: \forall x \in \mathbb{N}_0: \left\pi(x)\operatorname{li}(x)\right \leq C \sqrt{x} \log(x)$ > > > > > > Is this correct? > > > > > > thanks > > > jean > > > > The movie "A Beautiful Mind" about John Nash is now on Youtube: > > > > < http://www.youtube.com/watch?v=OOWT1371DRg > . > > > > I think John Nash in the movie or in reality tried to make > > headway on the Riemann Hypothesis ... > > > > David Bernier > > > > P.S. I'm afraid I can't read Tex or Latex ... just copy/paste the line
exists C: \forall x \in \mathbb{N}_0: \left\pi(x)\operatorname{li}(x)\right \leq C \sqrt{x} \log(x)
in the box shown on the following web page and press render: http://itools.subhashbose.com/educationaltools/latexrendererneditor.html > jean > > > But, please see "error term" in Prime Number Theorem, here: > > > > primepages, 1901 von Koch result: > > > > < http://primes.utm.edu/notes/rh.html > > > > > I trust PrimePages. Also, Schoenfeld(1976) explicit bound: > > > > < http://en.wikipedia.org/wiki/Riemann_hypothesis > .



