Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: FAILURE OF THE DISTINGUISHABILITY ARGUMENT. THE TRIUMPH OF CANTOR:
THE REALS ARE UNCOUNTABLE!

Replies: 47   Last Post: Jan 12, 2013 11:33 AM

 Messages: [ Previous | Next ]
 JT Posts: 1,448 Registered: 4/7/12
Re: FAILURE OF THE DISTINGUISHABILITY ARGUMENT. THE TRIUMPH OF
CANTOR: THE REALS ARE UNCOUNTABLE!

Posted: Jan 9, 2013 6:13 PM

On 9 Jan, 23:41, Virgil <vir...@ligriv.com> wrote:
> In article
>
>  WM <mueck...@rz.fh-augsburg.de> wrote:

> > On 9 Jan., 18:57, Zuhair <zaljo...@gmail.com> wrote:
> > > On Jan 9, 8:15 pm, WM <mueck...@rz.fh-augsburg.de> wrote:
>
> > > > On 9 Jan., 13:24, Zuhair <zaljo...@gmail.com> wrote:
>
> > > > > Actually Cantor's diagonal argument
> > > > > proves that the number of those tuples MUST be uncountable.

>
> > > > In fact, it does! But we know that the number of those tuples is
> > > > countable!

>
> > > No we don't know that!
>
> > Perhaps you don't. But everybody can learn it.
>
> No one need do so when not trying to pass one of WM's courses.
>
>
>
>
>
>
>
>
>
>
>

> > > there is NO seal on how many "Omega" sized
> > > tuples of FINITE initial segments of reals do we have!

>
> > Omega-sized sequences of finite initial segments are not different
> > from omega-sized sequences of digits. Both do not belong to the set of
> > finite definitions. Do you really believe that by using finite initial
> > segments instead of simple digits you make infinite sequences finite?

>
> > > there is no
> > > argument (even at intuitive level) in favor of having countably many
> > > such Omega sized tuples.

>
> > But there is a simple argument that omega sized tuples are infinite
> > and are not suitable as finite definitions.

>
> > > Actually the ONLY arguments that we have is
> > > in favor of having uncountably many such Omega sized tuples, which are
> > > Cantor's arguments. The set of All finite initial segments of reals is
> > > COUNTABLE! Yes! BUT the set of all Omega sized tuples of finite
> > > initial segments of reals is NOT countable!!!

>
> > That is not of interest. A Cantor-list does not use omega-sized tuples
> > but only finite initial segments.

>
> > > And also I want to stress that all of
> > > what I'm saying is abiding by the axiom of Extensionality of course,
> > > no doubt, and accordingly I do NOT hold that in a formal consistent
> > > theory we can distinguish UNdistinguishable elements or objects, since
> > > this is clearly nonsense. However the concept of Uncountability
> > > doesn't lead to that,

>
> > Try to read the literature of great mathematicians, for instance
> > matheology § 187.

>
> Even the best may have lapses, and WM quote mines those lapses with much
> greater effectiveness than he manages to do mathematics.
>
>
>

> > Or try to think with your own head
>
> Since WM only manages to think with someone else's head, if at all, he
> should reck his own rede.
>

> > Construct a list of all rationals of the unit interval. Remove all
> > periodic representations and keep only the finite ones

>
>  Since any sensible method of listing of rationals will not be done in
> terms of their decimal or other base expansions, why do it the hard way?
>
> , but all.
>

> > Then the list contains all finite initial segments which a possible
> > anti-diagonal can have. So the anti-diagonal can at no finite position
> > deviate from every entry of the list.

>
> There will be no finite digit position in the list up to which position
> the list itself does not contain duplicates, however any nonterminating
> decimal will not be in any list such as WM has described, so his list is
> incomplete.
>

> > That means it can never deviate
> > from every entry.

>
> On the contrary, if every listed decimal terminates then every
> non-terminating decimal is unlisted.
>

> > According to Cantor, anti-diagonal deviates from
> > every entry of the list at a finite position.

>
> In AT LEAST one finite position!
>
> An antidiagonal might even differ from some entries at EVERY digit
> position.
>

> > But even according to
> > Cantor it deviates never(at no finite position) from all entries.

>
> WM's Quantifier dyslexia strikes again.
>
> In order for an infinite sequence of digits to differ from all the
> infinite sequences of digits in a list, it only needs to differ suitably
> from each entry at one digit position, and that position can be
> different for different entries in the list.
>
> And any such infinite list of infinite sequences of digits, from a set
> of two or  more digits, is provably incomplete since Cantor showed that
> there is always a sequence missing from that list.
> --

In my opinion the naturals are infinite, and in my opinions the
fractions or infinitsimals are infinite fractions. But that does not
meant that either infinite nor infinitsimals are mathematical entities
or numbers if you so will, if you claim so both maximum and minumum
would be numbers, but they are not without a range/limit. Infinite and
infinismall are not numbers only concepts circling around undefined
quantities.