Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.matlab

Topic: Fitting to a Gaussian using nlinfit
Replies: 5   Last Post: May 23, 2013 1:10 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Torsten

Posts: 1,440
Registered: 11/8/10
Re: Fitting to a Gaussian using nlinfit
Posted: Jan 10, 2013 9:17 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

"Ben" wrote in message <kckmdj$8uo$1@newscl01ah.mathworks.com>...
> I have the number concentration per particle size for a range of sizes and for 24 instrument channels. The plot seems to follow a normal distribution and I would like to fit the data to one. My data is not in the form of a probability density function since the y-axis is not probability, but rather concentration. Thus the equation I would like to fit to is: y = H.*exp(-.5.*((dp-mu)/sigma)^2), where H is the height of the distribution.
>
> Following the methods outlined from the "Curve Fitting and Distribution Fitting" tutorial (http://www.mathworks.com/products/statistics/examples.html?file=/products/demos/shipping/stats/cfitdfitdemo.html), I attempted to use nlinfit to determine the optimal parameters H, mu, sigma. The result is not a good fit, however. I'm getting some errors when I run the code, namely, "Warning: Rank deficient, rank = 2, tol = 5.617004e-06." This, along with the terrible fit, makes me think I'm using this incorrectly.
>
> Does anyone know what's going on here?
>
> Here is my code:
> %data
> N_data = [
> 15284177237
> 23286616170
> 26033896374
> 39848389636
> 95606590189
> 1.95004E+11
> 4.1652E+11
> 6.90045E+11
> 9.16205E+11
> 1.13311E+12
> 1.34397E+12
> 1.52057E+12
> 1.70126E+12
> 1.87655E+12
> 1.84008E+12
> 1.75936E+12
> 1.527E+12
> 1.09247E+12
> 6.12101E+11
> 2.26027E+11
> 49697188712
> 17322725331
> 10247909480
> 5456170587];
>
> dp_data = [
> 1.05E-08
> 1.14E-08
> 1.22E-08
> 1.31E-08
> 1.41E-08
> 1.51E-08
> 1.62E-08
> 1.75E-08
> 1.88E-08
> 2.02E-08
> 2.18E-08
> 2.34E-08
> 2.52E-08
> 2.72E-08
> 2.93E-08
> 3.15E-08
> 3.40E-08
> 3.67E-08
> 3.96E-08
> 4.27E-08
> 4.61E-08
> 4.98E-08
> 5.38E-08
> 5.81E-08];
>
> %interpolate between points to get initial guess for height of dist.
> dp_space = logspace(log10(dp_star_meas(1)*0.75),log10(dp_star_meas(length(dp_star_meas))*1.25),1000);
> N_data_intr = interp1(dp_data,N_data,dp_space,'spline',0);
> initial_guesses(1) = peak(N_data_intr);
>
> %calculate mean and std for initial guess values
> for i = 1:length(N_data)
> mu = mu + dp_space(i)*N_data_intr(i);
> N_tot = N_tot + N_data_intr(i);
> end
> mu = mu/N_tot;
> for i = n:m
> f = f + N_data_intr(i)*(dp_space(i) - mu)^2;
> end
> std = sqrt(f/(N_tot));
> init_guesses(2) = mu;
> init_guesses(3) = std;
>
> %define function for nlinfit
> norm_func = @(p,dp) p(1).*exp(-.5.*((dp-p(2))/p(3)).^2);
>
> [bestfit,resid]=nlinfit(dp_data,log(N_data),@(p,x) log(norm_func(p,x)),init_guesses);
>
> here is an image of the final fit versus the data: http://s2.postimage.org/xeu65jqyx/nlinfit_graph.png
>
> I appreciate the help


You fit the log of your data against the log of your fit function.
This introduces a distortion to the estimates of your parameters.
Why don't you try the direct way
[bestfit,resid]=nlinfit(dp_data,N_data,norm_func,init_guesses);
?

Best wishes
Torsten.



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.