Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Finitely definable reals.
Replies: 52   Last Post: Jan 18, 2013 2:37 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
mueckenh@rz.fh-augsburg.de

Posts: 14,990
Registered: 1/29/05
Re: Finitely definable reals.
Posted: Jan 11, 2013 5:01 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On 11 Jan., 22:47, Virgil <vir...@ligriv.com> wrote:
> In article
> <9d94157d-444e-478e-86a0-61b57259f...@f4g2000yqh.googlegroups.com>,
>
>  WM <mueck...@rz.fh-augsburg.de> wrote:

> > On 11 Jan., 10:16, Zuhair <zaljo...@gmail.com> wrote:
> > > Lets say that a real r is finitely definable iff there is a predicate
> > > P that is describable by a Finitary formula that is uniquely satisfied
> > > by r.

>
> > Let's say a real r is finitely definable if every mathematician can
> > understand the definition.

>
> That would make reals language-dependent!


Of course. If there is no language, nobody can talk about numbers.
>
> It may well be that a real number does not have any complete decimal
> expansion, but has other definition on which people can agree


Numbers without complete decimal expansion cannot result from Cantor's
list. So they are irrelevant for the present discussion.

> But even if undefined, not necessarily non-existent.

Matheology.
>
>

> > > and many known first order languages are of that sort and
> > > they are proven to be consistent and even supportive of a proof
> > > system.

>
> > But they can only be understood by very patient listeners.
>
> Which WM is not.


That was irony. Infinite languages can only be understand by people
who lack any understanding.

> > In any case this kind of nonsense has nothing to do with Cantor who
> > held the opinion that infinite words are nonsense.

>
> But Cantor also managed to prove that there are more than countably many
> infinite binary strings possible


Cantor managed to prove that there are more than countably many finite
binary strings possible. Remember, the part behind a_nn of a_n is not
relevant for his proof.

> and that the standard definition of the
> standard complete ordered real number field requires the existence of
> more than countably many real numbers.


for people with predominantly mud in their heads.

> > And
> > uncountable sets which are in bijection with |N, namely the set of all
> > distinguishable real numbers.

>
> Being in bijection with |N is a special case of being countable.


I see.

Regards, WM


Date Subject Author
1/11/13
Read Finitely definable reals.
Zaljohar@gmail.com
1/11/13
Read Re: Finitely definable reals.
Aatu Koskensilta
1/11/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/11/13
Read Re: Finitely definable reals.
Zaljohar@gmail.com
1/11/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/11/13
Read Re: Finitely definable reals.
Zaljohar@gmail.com
1/11/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/11/13
Read Re: Finitely definable reals.
Virgil
1/11/13
Read Re: Finitely definable reals.
Virgil
1/12/13
Read Re: Finitely definable reals.
JT
1/12/13
Read Re: Finitely definable reals.
JT
1/12/13
Read Re: Finitely definable reals.
JT
1/12/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/12/13
Read Re: Finitely definable reals.
Virgil
1/12/13
Read Re: Finitely definable reals.
Virgil
1/11/13
Read Re: Finitely definable reals.
Virgil
1/11/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/11/13
Read Re: Finitely definable reals.
Virgil
1/12/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/12/13
Read Re: Finitely definable reals.
Virgil
1/14/13
Read Re: Finitely definable reals.
forbisgaryg@gmail.com
1/14/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/14/13
Read Re: Finitely definable reals.
Virgil
1/15/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/15/13
Read Re: Finitely definable reals.
forbisgaryg@gmail.com
1/15/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/15/13
Read Re: Finitely definable reals.
ross.finlayson@gmail.com
1/15/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/15/13
Read Re: Finitely definable reals.
Virgil
1/16/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/16/13
Read Re: Finitely definable reals.
Virgil
1/17/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/17/13
Read Re: Finitely definable reals.
Virgil
1/18/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/18/13
Read Re: Finitely definable reals.
Virgil
1/15/13
Read Re: Finitely definable reals.
Virgil
1/16/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/16/13
Read Re: Finitely definable reals.
Virgil
1/15/13
Read Re: Finitely definable reals.
Virgil
1/12/13
Read Re: Finitely definable reals.
camgirls@hush.com
1/13/13
Read Re: Finitely definable reals.
DBatchelo1
1/13/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/14/13
Read Re: Finitely definable reals.
DBatchelo1
1/14/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/14/13
Read Re: Finitely definable reals.
Virgil
1/15/13
Read Re: Finitely definable reals.
DBatchelo1
1/15/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/15/13
Read Re: Finitely definable reals.
Virgil
1/16/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/16/13
Read Re: Finitely definable reals.
Virgil
1/17/13
Read Re: Finitely definable reals.
mueckenh@rz.fh-augsburg.de
1/17/13
Read Re: Finitely definable reals.
Virgil
1/15/13
Read Re: Finitely definable reals.
Virgil

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.