Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Formally Unknowability, or absolute Undecidability, of certain arithmetic
formulas.

Replies: 22   Last Post: Jan 29, 2013 8:21 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
namducnguyen

Posts: 2,688
Registered: 12/13/04
Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
Posted: Jan 29, 2013 12:28 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On 28/01/2013 6:20 AM, Frederick Williams wrote:
> Nam Nguyen wrote:
>

>> I meant, what would "tomorrow", "today" have anything to to with
>> _mathematical logic_ ?

>
> Oh, a lot. Look up 'temporal logic'. In my day it was something of a
> curiosity of interest only to philosophers (hiss, boo, etc) but now it
> is of much interest to computer scientists among others.


It seems you aren't aware, but the assumed logic of this thread here
is the familiar FOL=.

--
----------------------------------------------------
There is no remainder in the mathematics of infinity.

NYOGEN SENZAKI
----------------------------------------------------


Date Subject Author
1/27/13
Read Formally Unknowability, or absolute Undecidability, of certain arithmetic
formulas.
namducnguyen
1/27/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmeticformulas.
Frederick Williams
1/27/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmeticformulas.
namducnguyen
1/27/13
Read Re: Formally Unknowability, or absolute Undecidability, of
certainarithmeticformulas.
Frederick Williams
1/27/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
namducnguyen
1/27/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
Jesse F. Hughes
1/27/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
namducnguyen
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
Jesse F. Hughes
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
namducnguyen
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
namducnguyen
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of
certainarithmeticformulas.
Frederick Williams
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
namducnguyen
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
fom
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmetic formulas.
Frederick Williams
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmetic formulas.
namducnguyen
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certainarithmeticformulas.
ross.finlayson@gmail.com
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain arithmeticformulas.
Michael Stemper
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmeticformulas.
namducnguyen
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain arithmetic formulas.
1/28/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmetic formulas.
fom
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmetic formulas.
namducnguyen
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmetic formulas.
fom
1/29/13
Read Re: Formally Unknowability, or absolute Undecidability, of certain
arithmetic formulas.
Graham Cooper

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.