Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Matheology § 210
Replies: 80   Last Post: Feb 8, 2013 5:45 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
mueckenh@rz.fh-augsburg.de

Posts: 13,476
Registered: 1/29/05
Matheology § 210
Posted: Feb 5, 2013 5:15 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply


Matheology § 210

An accessible number, to Borel, is a number which can be described as
a mathematical object. The problem is that we can only use some finite
process to describe a real number so only such numbers are accessible.
We can describe rationals easily enough, for example either as, say,
one-seventh or by specifying the repeating decimal expansion 142857.
Hence rationals are accessible. We can specify Liouville's
transcendental number easily enough as having a 1 in place n! and 0
elsewhere. Provided we have some finite way of specifying the n-th
term in a Cauchy sequence of rationals we have a finite description of
the resulting real number. However, as Borel pointed out, there are a
countable number of such descriptions. Hence, as Chaitin writes: "Pick
a real at random, and the probability is zero that it's accessible -
the probability is zero that it will ever be accessible to us as an
individual mathematical object."
[J.J. O'Connor and E.F. Robertson: "The real numbers: Attempts to
understand"]
http://www-history.mcs.st-and.ac.uk/HistTopics/Real_numbers_3.html

But how to pick this dark matter of numbers? Only accessible numbers
can get picked. Unpickable numbers cannot appear anywhere, neither in
mathematics nor in Cantor's lists. Therefore Cantor "proves" that the
pickable numbers, for instance numbers that can appear as an
antidiagonal of a defined list, i.e., the countable numbers, are
uncountable.

Regards, WM

For older §§ see
http://www.hs-augsburg.de/~mueckenh/KB/Matheology.pdf


Date Subject Author
2/5/13
Read Matheology § 210
mueckenh@rz.fh-augsburg.de
2/5/13
Read Re: Matheology § 210
fom
2/5/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/5/13
Read Re: Matheology § 210
William Hughes
2/5/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/5/13
Read Re: Matheology § 210
William Hughes
2/5/13
Read Re: Matheology � 210
Virgil
2/5/13
Read Re: Matheology § 210
fom
2/5/13
Read Re: Matheology � 210
Virgil
2/5/13
Read Re: Matheology § 210
fom
2/6/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/6/13
Read Re: Matheology § 210
fom
2/6/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/6/13
Read Re: Matheology � 210
Virgil
2/6/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology § 210
fom
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Re: Matheology § 210
Michael Stemper
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: WMytheology � 210
Virgil
2/7/13
Read Re: WMytheology § 210
fom
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
fom
2/8/13
Read Re: Matheology § 210
Ralf Bader
2/7/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/6/13
Read Re: Matheology � 210
Virgil
2/5/13
Read Re: Matheology � 210
Virgil
2/6/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/6/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: WM's WMytheology
Virgil
2/8/13
Read Re: Matheology § 210
Scott Berg

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.