Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Matheology § 210
Replies: 80   Last Post: Feb 8, 2013 5:45 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
fom

Posts: 1,969
Registered: 12/4/12
Re: Matheology § 210
Posted: Feb 7, 2013 9:41 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On 2/7/2013 1:04 AM, WM wrote:
> Now try to learn to apply the basics.

And, again, you are to stupid to understand my
version of the basics.

In Quine or Carnap you will find discussion
of components for truth table semantics. With
regard to the representation of logical
equivalence, there are six components that
are admissible.

TFFT
FTTF
TTFF
FFTT
TFTF
FTFT

What follows is an explanation of how
those six symbols generate the structural
relations between the elements of logical
discourse. This is how your precious quantifiers
are realized...

Hopefully, the diagrams will display properly
in your browser. Sadly, you are even
too stupid to understand the slit experiments
of your own profession.

================================

Another poster asked for clarification with regard to
the lattice,

....................................TRU....................................
............................./.../..//\..\.................................
......................../..../.../../....\...\.............................
.................../...../..../..../.........\.....\.......................
............../....../...../....../...............\......\.................
........./......./....../......../.....................\.......\...........
....../......./......./........./...........................\........\.....
.....IF......NAND.......IMP.....OR.........................ALL........NO...
..../.\.\..../.\.\..../..|.\..././\.\\..................../...\.....././...
.../...\./\......\./\....|./..\./..\...\...\...................../.........
../../..\...\.../...\./.\|...../.\..\....\............/....../...\../......
.//......\.../\.../....\.|.\../....\.\......\...\......../.................
LET.......XOR..FLIP....FIX..LEQ.....DENY........./.../............/\.......
.\\....../...\/...\..../.|./..\...././......./...\.......\.................
..\..\../.../...\.../.\./|.....\./../...../...../.............../....\.....
...\.../.\/....../.\/....|.\../.\../.../.../...........\.........\.........
....\././....\././....\..|./...\.\/.//.....................\./.......\.\...
.....NIF......AND......NIMP.....NOR........................OTHER......SOME.
......\.......\.......\.........\.........................../......../.....
.........\.......\......\........\...................../......./...........
..............\......\.....\......\.............../....../.................
...................\.....\....\....\........./...../.......................
........................\....\...\..\..../.../.............................
.............................\...\..\\/../.................................
....................................NTRU...................................



First of all, the easiest representation
is a Greechie diagram. These diagrams
are used to represent ortholattices and
orthomodular lattices that can be
understood as amalgams of Boolean
lattices. The points of a Greechie
diagram corresponds with the atoms
of the lattice and the directionality
of the connecting lines in the
diagram make a rigid, angular change
to indicate the connection point
for atomic amalgams.

So, the given ortholattice takes the
form


O
.\
..O
...\
....O--O--O--O


although this Greechie diagram
swaps the right-to-left orientation
of the given ortholattice in order
to minimize the space-filling points
I have added with the hope of
preserving graphics in newsgroup
readers.

The next simplest presentation is
the orthogonality diagram,



..............OTHER
.............*
.........../.|
........../..|
........./...|
......../....|
......./.....|.NOR...........NIF
.SOME.*------*-------------*
.............|\.........../|
.............|..\......./..|
.............|....\.../....|
.............|......X......|
.............|..../...\....|
.............|../.......\..|
.............|/...........\|
.............*-------------*
.........NIMP................AND


But, the explanation of this
diagram lies with the actual notion
of an orthologic. The following
example is transcribed from "Orthomodular
Lattices" by Beran

====================

As an illustration of a general guiding
principle, consider the following experiment
in which a single electron, say e, is confined
to move along the x-axis through a small slit
in a screen. After passing through the
slit, its y-coordinate, say q_y, and its
y-component of momentum, say p_y, can be
measured by two measuring devices.

This experiment can be used to define two
physical operations E_1 and E_2.



There is one symbol common to both
operations.

Symbol:
r

Description:
e is not present



There are three additional symbols
for operation E_1

Symbol:
a

Description:
e is present and q_y > 1

Symbol:
b

Description:
e is present and 1/2 < q_y < 1

Symbol:
c

Description:
e is present and q_y < 1/2



There are two additional symbols
for operation E_2

Symbol:
s

Description:
e is present and p_y > 1

Symbol:
t

Description:
e is present and p_y <= 1




It is customary to identify each
operation E_i with its set of
outcomes, i.e., write

E_1={a,b,c,r} and E_2={r,s,t}

We now need to define a manual
and the relation of orthogonality
associated with the manual.

Let E_i, ieI be nonvoid sets and let
M={E_i:ieI}. Let TOP denote the union
of the sets E_i. Given xeTOP and yeTOP,
we write

x_|_y

and call the
elements x and y orthogonal when
there exist E_j, jeI such that
{x,y}cE_j and when -(x=y)

A subset D of TOP is called an event
of M if and only if there exists
E_k, keI, such that DcE_k.

The set of all events will be
denoted E(M). A subset NcTOP is
said to be orthogonal if and only
if x_|_y for all -(x=y) of N.

Under these conventions we shall
say that M is a manual if and only
if the following two conditions
are satisfied:

1. if E_i,E_j are in M and E_icE_j
then E_i=E_j

2. if E_i,E_j are in M and if N is
an orthogonal set such that
Nc(E_iuE_j), then there exists
E_keM with NcE_k

Next, for KcTOP, define

K^_|_={ aeTOP: AkeK a_|_k}

Returning to construction of the
example, let M={E_1,E_2} be the manual
consisting of the operations
E_1, E_2. The orthogonality relation
_|_ defined by M is shown in
the figure

..............s
.............*
.........../.|
........../..|
........./...|
......../....|
......./.....|.r.............c
....t.*------*-------------*
.............|\.........../|
.............|..\......./..|
.............|....\.../....|
.............|......X......|
.............|..../...\....|
.............|../.......\..|
.............|/...........\|
.............*-------------*
............a................b



Let us now carry out the construction of
the orthologic affiliated with the manual
M={E_1,E_2}.

According to the general procedure, we
obtain the orthologic from the following
list of events where we for brevity write
abcrst for {a,b,c,r,s,t}, etc.


D=BOT=null

D^_|_=TOP=abcrst

D^_|_^_|_=BOT



D=a

D^_|_=bcr

D^_|_^_|_=a



D=b

D^_|_=acr

D^_|_^_|_=b



D=c

D^_|_=abr

D^_|_^_|_=c



D=r

D^_|_=abcst

D^_|_^_|_=r



D=ab

D^_|_=rc

D^_|_^_|_=ab



D=ac

D^_|_=br

D^_|_^_|_=ac



D=ar

D^_|_=bc

D^_|_^_|_=ar



D=bc

D^_|_=ar

D^_|_^_|_=bc



D=br

D^_|_=ac

D^_|_^_|_=br



D=cr

D^_|_=ab

D^_|_^_|_=cr



D=abc

D^_|_=r

D^_|_^_|_=abcst



D=abr

D^_|_=c

D^_|_^_|_=abr



D=acr

D^_|_=b

D^_|_^_|_=acr



D=bcr

D^_|_=a

D^_|_^_|_=bcr



D=abcr

D^_|_=BOT

D^_|_^_|_=TOP



D=s

D^_|_=rt

D^_|_^_|_=s



D=t

D^_|_=rs

D^_|_^_|_=t



D=rs

D^_|_=t

D^_|_^_|_=rs



D=rt

D^_|_=s

D^_|_^_|_=rt



D=st

D^_|_=r

D^_|_^_|_=abcst



D=rst

D^_|_=BOT

D^_|_^_|_=TOP



Hence, as a preliminary remark it may be
said that the base set of the orthologic
has exactly twenty elements. By means of
the D^_|_^_|_ the construction of the
orthologic is now elementary. The
resulting diagram represents an orthomodular
lattice which can be obtained as an
atomic amalgam of the Boolean algebras
2^4 and 2^3.



....................................TOP....................................
............................./.../..//\..\.................................
......................../..../.../../....\...\.............................
.................../...../..../..../.........\.....\.......................
............../....../...../....../...............\......\.................
........./......./....../......../.....................\.......\...........
....../......./......./........./...........................\........\.....
.....bcr......acr.......abr.....abcst.......................rt.........rs...
..../.\.\..../.\.\..../..|.\..././\.\\..................../...\.....././...
.../...\./\......\./\....|./..\./..\...\...\...................../.........
../../..\...\.../...\./.\|...../.\..\....\............/....../...\../......
.//......\.../\.../....\.|.\../....\.\......\...\......../.................
.ab........ac...ar......bc..br......cr.........../.../............/\.......
.\\....../...\/...\..../.|./..\...././......./...\.......\.................
..\..\../.../...\.../.\./|.....\./../...../...../.............../....\.....
...\.../.\/....../.\/....|.\../.\../.../.../...........\.........\.........
....\././....\././....\..|./...\.\/.//.....................\./.......\.\...
......a........b.........c.......r..........................s..........t...
......\........\........\.........\........................./......../.....
.........\........\.......\.......\..................../......./...........
..............\......\......\......\............../....../.................
...................\.....\....\....\........./...../.......................
........................\....\...\..\..../.../.............................
.............................\...\..\\/../.................................
....................................BOT....................................




=======================================



This explanation is a lot, I know. But, it
is what it is.


As for my own researches, the notion of
semantics for a complete logical connective
such as NAND or NOR depends on the fixed
representation of a truth table.

In considering the nature of truth table
semantics, I divorced my understanding of
a truth-function from its representation.

Given that there are six possible fixed
representations for logical equivaelence
(vectors containing 2 T's and 2 F's), the
"odd man out" position for NAND (its False
position) identifies the locus of constant
T values in a truth table. Similarly, the
"odd man out" for NOR (its True position)
identifies the locus of constant F values.

Relative to this pattern matching, consider
the assignments

There is one symbol common to both
operations.

Symbol:
r

Description:
TFTF



There are three additional symbols
for operation E_1

Symbol:
a

Description:
FFTT

Symbol:
b

Description:
FTFT

Symbol:
c

Description:
FTTF



There are two additional symbols
for operation E_2

Symbol:
s

Description:
TTFF

Symbol:
t

Description:
TFFT





Without going into any more details,
this should suffice to explain why my
thoughts on the nature of logic and its
geometric foundation are somewhat
different from most.












Date Subject Author
2/5/13
Read Matheology § 210
mueckenh@rz.fh-augsburg.de
2/5/13
Read Re: Matheology § 210
fom
2/5/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/5/13
Read Re: Matheology § 210
William Hughes
2/5/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/5/13
Read Re: Matheology § 210
William Hughes
2/5/13
Read Re: Matheology � 210
Virgil
2/5/13
Read Re: Matheology § 210
fom
2/5/13
Read Re: Matheology � 210
Virgil
2/5/13
Read Re: Matheology § 210
fom
2/6/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/6/13
Read Re: Matheology § 210
fom
2/6/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/6/13
Read Re: Matheology � 210
Virgil
2/6/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
William Hughes
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology § 210
fom
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Re: Matheology § 210
Michael Stemper
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/8/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: WMytheology � 210
Virgil
2/7/13
Read Re: WMytheology § 210
fom
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology § 210
fom
2/8/13
Read Re: Matheology § 210
Ralf Bader
2/7/13
Read Re: Matheology � 210
Virgil
2/8/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/7/13
Read Re: Matheology § 210
fom
2/6/13
Read Re: Matheology � 210
Virgil
2/5/13
Read Re: Matheology � 210
Virgil
2/6/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/6/13
Read Re: Matheology � 210
Virgil
2/7/13
Read Re: Matheology § 210
mueckenh@rz.fh-augsburg.de
2/7/13
Read Re: WM's WMytheology
Virgil
2/8/13
Read Re: Matheology § 210
Scott Berg

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.