Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: distinguishability - in context, according to definitions
Replies: 43   Last Post: Feb 22, 2013 10:04 AM

 Messages: [ Previous | Next ]
 fom Posts: 1,968 Registered: 12/4/12
Re: distinguishability - in context, according to definitions
Posted: Feb 17, 2013 3:31 AM

On 2/17/2013 12:49 AM, Dan wrote:

<snip>

>
> The problem of 1 = 0.(x) appears for any possible base of
> numeration .
> If you're bothered by the representation being 'lossy' , you can
> always try continued fractions for the numbers in the interval [0,1] :
> Each real number is represented by a (possibly infinite) sequence of
> strictly positive integers :
> You represent r by [a1,a2,a3 ..... an ...] meaning that
> r = 0 + 1/ (a1 + 1 / (a2 + 1/ (a3 + .... )))
> I'm pretty sure you can build up the whole of analysis this way ,
> though nobody's bothered to do it, so it must be tedious.
> That being said, I was never really bothered by the whole 0.(9) = 1
> business , it's just a quirk in notation .

I am aware of continued fractions. And, there is
nothing about the particular statement of equality
that bothers me.

You seem to be focused on the wrong part of the
post. That is fine. I know that most mathematicians
are not accustomed to the kind of logic that comes
from Frege, Russell, Carnap, Lesniewski, Wittgenstein,
Tarski and others. But, in fact, what do most mathematicians
intend when they say that mathematics is "logical" but
then ignore the presumptions and opinions upon which that
is based (in the modern sense)?

That is a rhetorical question. In your arena, there is an
entirely different set of people such as Turing, Kolgomorov,
Markov, Church, Curry, Kleene, etc.

> What seems far more troublesome is the representation of finite
> fields , you always have to 'choose' one of many irreducible
> polynomials if you want to work with them .
>

I have recently run into that problem. I have been fascinated
by a particular presentation of the elements of the Galois field
over 2^4 generated by

p(x)=x^4+x+1

I doubt that it is unique. My interest, however, is not
computational.

Date Subject Author
2/10/13 fom
2/10/13 J. Antonio Perez M.
2/10/13 fom
2/11/13 Shmuel (Seymour J.) Metz
2/11/13 fom
2/14/13 Shmuel (Seymour J.) Metz
2/14/13 fom
2/14/13 fom
2/15/13 fom
2/15/13 Shmuel (Seymour J.) Metz
2/16/13 fom
2/17/13 Shmuel (Seymour J.) Metz
2/19/13 fom
2/21/13 Shmuel (Seymour J.) Metz
2/15/13 fom
2/15/13 fom
2/14/13 fom
2/17/13 Shmuel (Seymour J.) Metz
2/17/13 fom
2/17/13 Barb Knox
2/18/13 fom
2/19/13 Shmuel (Seymour J.) Metz
2/19/13 fom
2/21/13 Shmuel (Seymour J.) Metz
2/19/13 Shmuel (Seymour J.) Metz
2/19/13 fom
2/21/13 Shmuel (Seymour J.) Metz
2/21/13 fom
2/22/13 Shmuel (Seymour J.) Metz
2/15/13 fom
2/17/13 Shmuel (Seymour J.) Metz
2/17/13 fom
2/19/13 Shmuel (Seymour J.) Metz
2/16/13 dan.ms.chaos@gmail.com
2/16/13 fom
2/17/13 dan.ms.chaos@gmail.com
2/17/13 fom
2/17/13 dan.ms.chaos@gmail.com
2/18/13 Shmuel (Seymour J.) Metz
2/20/13 fom
2/21/13 Shmuel (Seymour J.) Metz
2/16/13 fom
2/19/13 Shmuel (Seymour J.) Metz
2/19/13 fom