Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: distinguishability - in context, according to definitions
Replies: 43   Last Post: Feb 22, 2013 10:04 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
fom

Posts: 1,969
Registered: 12/4/12
Re: distinguishability - in context, according to definitions
Posted: Feb 17, 2013 2:21 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On 2/17/2013 9:12 AM, Shmuel (Seymour J.) Metz wrote:
> In <8O-dnQWE1cztU4DMnZ2dnUVZ_oydnZ2d@giganews.com>, on 02/14/2013
> at 11:57 PM, fom <fomJUNK@nyms.net> said:
>

>> It would make no sense to treat the presentation
>> of the "math trick" and its corresponding algebraic
>> variant in any semantically meaningful way since
>> that particular proof was not the subject of analysis.

>
> Strings such as '9.(9)'[1] are not real numbers, but denote real
> numbers; specifically, they denote the limits of sequences derived
> from them. Deriving numerical equalities by manipulating such strings
> is only valid to the extent that it can be justified by analysis. What
> you describe as a trick is at best a heuristic. In
>

>> 9.999...
>> -0.999...
>> ---------
>> 9.000...

>
> What matters is not the syntactic similarity of the first two strings,
> but that they can be proven to denote 10 and 1.


I hope my clarification to you regarding your other question shows
that we are in agreement on this.

>
> [1] I've avoided use of the ellipis since its meaning is not
> always clear.
>


Good for you.

I realize it is common, and, I try to interpret it as intended,
but truly,

2,4,6,8,...

does not permit one to surmise 10 as the next element of the
sequence. I will never quite forget how impressed I was by the
chaotic nature of mathematics when learning Runge's theorem.
There is nothing special about it. I had just not appreciated
just how badly "nice" functions could behave until that point
in my studies.


















Date Subject Author
2/10/13
Read distinguishability - in context, according to definitions
fom
2/10/13
Read Re: distinguishability - in context, according to definitions
J. Antonio Perez M.
2/10/13
Read Re: distinguishability - in context, according to definitions
fom
2/11/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/11/13
Read Re: distinguishability - in context, according to definitions
fom
2/14/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/14/13
Read Re: distinguishability - in context, according to definitions
fom
2/14/13
Read Re: distinguishability - in context, according to definitions
fom
2/15/13
Read Re: distinguishability - in context, according to definitions
fom
2/15/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/16/13
Read Re: distinguishability - in context, according to definitions
fom
2/17/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/19/13
Read Re: distinguishability - in context, according to definitions
fom
2/21/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/15/13
Read Re: distinguishability - in context, according to definitions
fom
2/15/13
Read Re: distinguishability - in context, according to definitions
fom
2/14/13
Read Re: distinguishability - in context, according to definitions
fom
2/17/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/17/13
Read Re: distinguishability - in context, according to definitions
fom
2/17/13
Read Re: distinguishability - in context, according to definitions
Barb Knox
2/18/13
Read Re: distinguishability - in context, according to definitions
fom
2/19/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/19/13
Read Re: distinguishability - in context, according to definitions
fom
2/21/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/19/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/19/13
Read Re: distinguishability - in context, according to definitions
fom
2/21/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/21/13
Read Re: distinguishability - in context, according to definitions
fom
2/22/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/15/13
Read Re: distinguishability - in context, according to definitions
fom
2/17/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/17/13
Read Re: distinguishability - in context, according to definitions
fom
2/19/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/16/13
Read Re: distinguishability - in context, according to definitions
dan.ms.chaos@gmail.com
2/16/13
Read Re: distinguishability - in context, according to definitions
fom
2/17/13
Read Re: distinguishability - in context, according to definitions
dan.ms.chaos@gmail.com
2/17/13
Read Re: distinguishability - in context, according to definitions
fom
2/17/13
Read Re: distinguishability - in context, according to definitions
dan.ms.chaos@gmail.com
2/18/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/20/13
Read Re: distinguishability - in context, according to definitions
fom
2/21/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/16/13
Read Re: distinguishability - in context, according to definitions
fom
2/19/13
Read Re: distinguishability - in context, according to definitions
Shmuel (Seymour J.) Metz
2/19/13
Read Re: distinguishability - in context, according to definitions
fom

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.