
Re: A nonconventional ListContourPlot
Posted:
Feb 25, 2013 2:19 AM


x[a_, b_] = a*b; y[a_, b_] = Cos[a^2 + b]; z[a_, b_] = Sin[a + b^2];
data = Table[ {x[i, j], y[i, j], z[i, j]}, {j, 1, 1, 0.1}, {i, 2, 2, 0.1}] // Flatten[#, 1] &;
ListContourPlot[data]
ListContourPlot3D[data]
However, both ListContourPlot and ListContourPlot3D are difficult to interpret for this complicated function. I recommend that you look at the function with ParametricPlot3D.
Manipulate[ ParametricPlot3D[ Evaluate[ {x[a, b], y[a, b], z[a, b]}], {a, 2, 2}, {b, 1, 1}, RegionFunction > (#3 <= slice &), BoundaryStyle > Directive[Black, Thick], PlotRange > {{2, 2}, {1, 1}, {1, 1}}, PlotPoints > 50], {{slice, 1}, 0.95, 1, 0.05, Appearance > "Labeled"}]
Bob Hanlon
On Sat, Feb 23, 2013 at 11:32 PM, Luiz Melo <lmelo@ufsj.edu.br> wrote: > Good day, > > x[a_,b_] = a*b; > y[a_,b_] = Cos[a^2 + b]; > z[a_,b_] = Sin[a + b^2]; > > data = Table[{x[i,j], y[i,j], z[i,j]}, {j, 1, 1, 0.1}, {i, 2, 2, 0.1}]; > > For the table above, is it possible to see a ListContourPlot of the z > component as a function of x and y (the values of x and y on the > horizontal and vertical axes, respectively)? > > Thank you in advance > Luiz Melo >

