Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: Cardinality of turning wheel
Replies: 43   Last Post: Mar 10, 2013 1:55 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
quasi

Posts: 10,314
Registered: 7/15/05
Re: Cardinality of turning wheel
Posted: Mar 7, 2013 3:37 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

netzweltler wrote:
>quasi wrote:
>> netzweltler wrote:
>> >quasi wrote:
>> >>
>> >>As far as the notion of infinite speed, I see the
>> >>specification of such a model as problematic, but as I
>> >>said, I would be willing to look at a proposal for such
>> >>a model, so long as the assumptions were fully specified,
>> >>and sufficient justification for analyzing the model was
>> >>provided.

>> >
>> >Is the notion of infinite speed more problematic to you
>> >than the notion, that any revolution of the countably
>> >infinite set of revolutions can be the origin -
>> >revolution #1?

>>
>> No, the choice of origin is arbitrary.

>
>There are countably infinitely many segments [0, 0.5] (#1),
>[0.5,0.75] (#2), [0.75, 0.875] (#3), ... in [0, 1].
>
>If the choice of #1 is arbitrary I can name any of these
>segments #1. If any segment of size > 0 can be #1, which
>segments are left to mark #2, #3, and so on?


Mark them with non-positive integers, #0, #-1, #-2, ...

Any infinite set of pairwise disjoint intervals on the real
line is countably infinite since each interval contains a
distinct rational number.

quasi


Date Subject Author
3/2/13
Read Cardinality of turning wheel
netzweltler
3/2/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/2/13
Read Re: Cardinality of turning wheel
quasi
3/2/13
Read Re: Cardinality of turning wheel
netzweltler
3/2/13
Read Re: Cardinality of turning wheel
William Elliot
3/3/13
Read Re: Cardinality of turning wheel
quasi
3/3/13
Read Re: Cardinality of turning wheel
netzweltler
3/3/13
Read Re: Cardinality of turning wheel
quasi
3/3/13
Read Re: Cardinality of turning wheel
netzweltler
3/3/13
Read Re: Cardinality of turning wheel
quasi
3/3/13
Read Re: Cardinality of turning wheel
netzweltler
3/3/13
Read Re: Cardinality of turning wheel
Brian Chandler
3/4/13
Read Re: Cardinality of turning wheel
netzweltler
3/3/13
Read Re: Cardinality of turning wheel
quasi
3/3/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/3/13
Read Re: Cardinality of turning wheel
quasi
3/4/13
Read Re: Cardinality of turning wheel
netzweltler
3/4/13
Read Re: Cardinality of turning wheel
quasi
3/4/13
Read Re: Cardinality of turning wheel
Shmuel (Seymour J.) Metz
3/5/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/5/13
Read Re: Cardinality of turning wheel
netzweltler
3/5/13
Read Re: Cardinality of turning wheel
quasi
3/6/13
Read Re: Cardinality of turning wheel
netzweltler
3/6/13
Read Re: Cardinality of turning wheel
quasi
3/7/13
Read Re: Cardinality of turning wheel
netzweltler
3/7/13
Read Re: Cardinality of turning wheel
quasi
3/8/13
Read Re: Cardinality of turning wheel
netzweltler
3/8/13
Read Re: Cardinality of turning wheel
quasi
3/8/13
Read Re: Cardinality of turning wheel
netzweltler
3/8/13
Read Re: Cardinality of turning wheel
quasi
3/8/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/2/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/3/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/5/13
Read Re: Cardinality of turning wheel
K_h
3/7/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/7/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/3/13
Read Re: Cardinality of turning wheel
Shmuel (Seymour J.) Metz
3/7/13
Read Re: Cardinality of turning wheel
Frederick Williams
3/10/13
Read Re: Cardinality of turning wheel
Shmuel (Seymour J.) Metz

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.