Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.math.mathematica

Topic: Alternative to Table
Replies: 2   Last Post: Mar 7, 2013 10:47 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Iván Lazaro

Posts: 34
Registered: 6/18/07
Re: Alternative to Table
Posted: Mar 7, 2013 10:47 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Thanks a lot!

2013/3/7 <daniel.lichtblau0@gmail.com>:
> On Tuesday, March 5, 2013 9:13:02 PM UTC-6, Iv=E1n Lazaro wrote:
>> Dear group:
>>

>
>> I'm trying to build a code that evolves a grid of dimension 2gridDim+1
>> over a time timeDim. I managed to build such a code using Table with
>> only one problem: when the value of timeDim is of thousands, the time
>> it takes to evaluate is absurd. I tried to find an alternative way to
>> write this code, using NestList withouth success. NestList is able to
>> have an interator if I write it like #[[1]]+1, but it doesn't work
>> when I use it as an element of a list.
>>
>> I let here a toy working example. Any input would be most appreciated.
>>
>> Iv=E1n.
>>
>>
>> gridDim = 2; timeDim = 3;
>> list = ConstantArray[0, {2, 2*gridDim + 1, timeDim}];
>>
>> Table[list[[1, i, 1]] = Sin[-(gridDim + 1.) + i], {i, 1,
>> 2*gridDim + 1}];
>> Table[list[[2, i, 1]] = RandomReal[{0, 2*Pi}], {i, 1, 2*gridDim + 1}];
>>
>>
>> zUpdate[list_, t_] := Module[{lista},
>> lista = {};
>> lista = list;
>> Table[If[i + 1 > 2*gridDim + 1,
>> lista[[1, i, t + 1]] = list[[1, i, t]] (list[[2, 1, t]] -
>> list[[2, i - 1, t]]), If[
>> i - 1 == 0,
>> lista[[1, i, t + 1]] = list[[1, i, t]] (list[[2, i + 1, t]] -
>> list[[2, 2*gridDim + 1, t]]),
>> lista[[1, i, t + 1]] = list[[1, i, t]] (list[[2, i + 1, t]] -
>> list[[2, i - 1, t]])]],
>> {i, 1, 2*gridDim + 1}];
>> lista
>> ];
>>
>>
>> pUpdate[list_, t_] := Module[{lista},
>> lista = {};
>> lista = list;
>> Table[If[i + 1 > 2*gridDim + 1,
>> lista[[2, i, t + 1]] = Mod[list[[1, i, t + 1]] (list[[2, 1, t]] -
>> list[[2, i - 1, t]]), 2*Pi],
>> If[i - 1 == 0,
>> lista[[2, i, t + 1]] = Mod[list[[1, i, t + 1]] (list[[2, i + 1,
>> t]] - list[[2, 2*gridDim + 1, t]]), 2*Pi],
>> lista[[2, i, t + 1]] = Mod[ list[[1, i, t + 1]] (list[[2, i + 1,
>> t]] - list[[2, i - 1, t]]), 2*Pi]]], {i, 1, 2*gridDim + 1}];
>> lista
>> ];
>>
>>
>> Do[
>> list = zUpdate[list, i];
>> list = pUpdate[list, i];, {i, 1, timeDim - 1}];
>> list

>
> Your update functions are doing approximately infinitely many array copies. Instead you could alter the thing in place by using HoldFirst attributes for those functions. Below is pedestrian Do-loop code for this. I also simplified the updates by making use of Mod to handle the iterator edge value cases.
>
> I will illustrate on an example where the relevant dimensions are 200 and 3000 respectively.
>
> gridDim = 200; timeDim = 3000;
> list = ConstantArray[0, {2, 2*gridDim + 1, timeDim}];
>
> AbsoluteTiming[
> Do[list[[1, i, 1]] = Sin[-(gridDim + 1.) + i], {i, 1, 2*gridDim + 1}];
> Do[list[[2, i, 1]] = RandomReal[{0, 2*Pi}], {i, 1, 2*gridDim + 1}];]
>
> Out[3]= {0.035499, Null}
>
> SetAttributes[zUpdate, HoldFirst]
> zUpdate[list_, t_] :=
>
> Do[list[[1, i, t + 1]] =
> list[[1, i, t]] *(list[[2, Mod[i + 1, 2*gridDim + 1, 1], t]] -
> list[[2, Mod[i - 1, 2*gridDim + 1, 1], t]]),
> {i, 1, 2*gridDim + 1}]
>
> SetAttributes[pUpdate, HoldFirst]
> pUpdate[list_, t_] :=
>
> Do[list[[2, i, t + 1]] =
> Mod[list[[1, i,
> t + 1]] (list[[2, Mod[i + 1, 2*gridDim + 1, 1], t]] -
> list[[2, Mod[i - 1, 2*gridDim + 1, 1], t]]), 2*Pi], {i, 1,
> 2*gridDim + 1}]
>
> Now run the thing.
>
> AbsoluteTiming[Do[zUpdate[list, i];
> pUpdate[list, i];, {i, 1, timeDim - 1}];]
>
> Out[8]= {18.619950, Null}
>
>
> Daniel Lichtblau
> Wolfram Research
>





Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.