Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: LE MENSONGE CRUCIAL DES EINSTEINIENS
Replies: 4   Last Post: Apr 10, 2013 5:13 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Pentcho Valev

Posts: 3,241
Registered: 12/13/04
Re: LE MENSONGE CRUCIAL DES EINSTEINIENS
Posted: Mar 20, 2013 6:49 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

Olivier Darrigol est très intelligent mais chaque fois que la théorie de l'émission est mentionnée il est confus et frustré:

http://www.cerimes.education.fr/articles/article_3061/les-origines-electrodynamiques-de-la-theorie-de-la-relativite
"Les origines électrodynamiques de la théorie de la relativité", Olivier Darrigol

D'où viennent la confusion et la frustration? Darrigol est membre du groupe nombreux mais clandestin des Einsteiniens qui savent que la théorie de l'émission (la vitesse de la lumière dépend de la vitesse de la source émettrice) est vraie:

http://www.worldsci.org/people/Olivier_Darrigol
Darrigol, Dr. Olivier, Interests: Electrodynamics, Fluid Dynamics, RITZIAN RELATIVITY

http://www.waltherritz.ch/programme
Olivier Darrigol, directeur de recherche au CNRS: "Ritz est l'auteur d'une tentative célèbre de concilier l'électrodynamique et le principe de relativité dans une théorie qui FAIT DEPENDRE LA VITESSE DE LA LUMIERE DE CELLE DE LA SOURCE."

http://www.sps.ch/fr/artikel/geschichte_der_physik/walter_ritz_the_revolutionary_classical_physicist_2/
Jan Lacki: "Ritz had no time to make his theory more elaborate. He died complaining that no one, even in Göttingen, was granting his views sufficient care. His emissionist views were submitted to heavy criticism and experimental tests were later realized to show their inanity. Today, with considerable hindsight, we know the end of the story and how Einstein and Planck's views shaped our contemporary physics. While few would today contest the reality of quanta or turn their back on field theory of elementary processes, it is interesting to know that the criticisms against Ritz's conceptions were shown, since then, often wanting, if not simply incorrect. It is fair to say that if Ritz's emission theory is false, it cannot be as easily dismissed as it was thought in Ritz's times."

https://webspace.utexas.edu/aam829/1/m/Relativity_files/RitzEinstein.pdf
Alberto Martinez: "Two months after Ritz's death, in September 1909, his exchange with Einstein barely echoed at a meeting of the Deutsche Naturforscher und Ärtze in Salzburg, where Einstein delivered a lecture elaborating his views on the radiation problem but made no explicit reference to Ritz's views. Two years later, however, in November 1911, Paul Ehrenfest wrote a paper comparing Einstein's views on light propagation with those of Ritz. Ehrenfest noted that although both approaches involved a particulate description of light, Ritz's theory constituted a "real" emission theory (in the Newtonian sense), while Einstein's was more akin to the ether conception since it postulated that the velocity of light is independent of the velocity of its source. (...) Ritz's emission theory garnered hardly any supporters, at least none who would develop it or express support for it in print. As noted above, in 1911, two years after Ritz's death, Ehrenfest wrote a paper contrasting Ritz's and Einstein's theories, to which Einstein responded in several letters, trying in vain to convince him that the emission hypothesis should be rejected. Then Ehrenfest became Lorentz's successor at Leiden, and in his inaugural lecture in December 1912, he argued dramatically for the need to decide between Lorentz's and Einstein's theories, on the one hand, and Ritz's on the other. After 1913, however, Ehrenfest no longer advocated Ritz's theory. Ehrenfest and Ritz had been close friends since their student days, Ehrenfest having admired Ritz immensely as his superior in physics and mathematics; but following Ritz's death, Einstein came to play that role, as he and Ehrenfest became close friends."

https://webspace.utexas.edu/aam829/1/m/Relativity.html
Alberto Martinez: "Does the speed of light depend on the speed of its source? Before formulating his theory of special relativity, Albert Einstein spent a few years trying to formulate a theory in which the speed of light depends on its source, just like all material projectiles. Likewise, Walter Ritz outlined such a theory, where none of the peculiar effects of Einstein's relativity would hold. By 1913 most physicists abandoned such efforts, accepting the postulate of the constancy of the speed of light. Yet five decades later all the evidence that had been said to prove that the speed of light is independent of its source had been found to be defective."

http://www.amazon.com/Einstein-Changing-Worldviews-Physics-Studies/dp/0817649395/
Einstein and the Changing Worldviews of Physics, Einstein Studies, 2012, Volume 12, Part 1, 23-37, The Newtonian Theory of Light Propagation, Jean Eisenstaedt: "It is generally thought that light propagation cannot be treated in the framework of Newtonian dynamics. However, at the end of the 18th century and in the context of Newton's Principia, several papers, published and unpublished, offered a new and important corpus that represents a detailed application of Newton's dynamics to light. In it, light was treated in precisely the same way as material particles. This most interesting application - foreshadowed by Newton himself in the Principia - constitutes a relativistic optics of moving bodies, of course based on what we nowadays refer to as Galilean relativity, and offers a most instructive Newtonian analogy to Einsteinian special and general relativity (Eisenstaedt, 2005a; 2005b). These several papers, effects, experiments, and interpretations constitute the Newtonian theory of light propagation. I will argue in this paper, however, that this Newtonian theory of light propagation has deep parallels with some elements of 19th century physics (aberration, the Doppler effect) as well as with an important part of 20th century relativity (the optics of moving bodies, the Michelson experiment, the deflection of light in a gravitational field, black holes, the gravitational Doppler effect). (...) Not so surprisingly, neither the possibility of a Newtonian optics of moving bodies nor that of a Newtonian gravitational theory of light has been easily "seen," neither by relativists nor by historians of physics; most probably the "taken-for-granted fact" of the constancy of the velocity of light did not allow thinking in Newtonian terms."

Pentcho Valev



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.