Drexel dragonThe Math ForumDonate to the Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.

Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: Using classes instead of sets
Replies: 26   Last Post: Apr 1, 2013 8:04 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]

Posts: 384
Registered: 7/12/10
Re: Using classes instead of sets
Posted: Mar 28, 2013 6:50 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On Thursday, March 28, 2013 12:23:47 AM UTC, smn wrote:
> On Wednesday, March 27, 2013 3:29:15 PM UTC-7, Paul wrote:

> > Most of the basic mathematical structures, for example topological spaces, fields, rings etc. assume an underlying set in their definitions.
> >
> > However, the surreal numbers don't form a set since they contain a copy of the ordinals. They form a class. Since I can't see a problem with the non-setness of surreal numbers, I wonder why definitions of other mathematical structures aren't more general and why the above categories are defined on sets rather than classes.
> >
> > Class -set theory is better then pure set theory for the general from for mathematical theories , its objects are classes ,say x,y,z etc on which there is a non-logical 2 place predicate "e" read as -is an element of for instance -xey :x is an element of y . "=" is a logical predicate ,x=y is interpreted as "x" and "y" denote the same class . x is a set means that for some y ,xey .There are many classes that are not sets, for example the class of all vector spaces over the Set of real numbers. However each vector space must be a set since it is an element of the class of all vector spaces . When one speaks of the class,say A of all all objects satisfying some condition it is only sets can be allowed in the class , since any such object ,say x which satisfies the given condition must be an element of A and thus must be a set.
> If you tried to form the class of all classes B satisfying say : x is not and element of x (Russell's example) then ,B can not be in B (if it were ,substituting B for x would give a contradiction. But then ,since B is not in B . it is one of the classes satisfying the condition so B is an element of B ; This is a contradiction to the system ; Hope this helps .See Wikipedia for references.Hope that helps.smn

Although this reply contains much interesting info, it doesn't answer my main concern. [Totally my fault for not expressing it directly enough, in the first place.] My point was meant to be that definitions of groups, rings, fields, topological spaces etc. generally begin with something like "Let X be a set.."
Why? Why not say "Let X be a class..." It would be more general. Perhaps it might lead to Russell-style paradoxes. But, if that is the risk, why is it ok for surreal numbers to form a proper class which isn't a set?

paul Epstein

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.