
Re: 1 + 2 + ... + n a polynomial how?
Posted:
Apr 1, 2013 11:00 PM


On Monday, April 1, 2013 9:18:54 AM UTC7, Jussi Piitulainen wrote:
> Is it obvious that 1 + 2 + ... + n is a polynomial of degree 2? How? > I mean the sum of the first n positive integers. I would like to see > that it is a polynomial of degree 2 _without using_ the fact that it > is equal to n(n + 1)/2. Zeilberger (his new Opinion 129) says Gauss > could have used the polynomiality of the sum to support the equality, > rather than the other way around.
> Thanks for any insight.
You want insight? Here's insight: it was written on April 1.

