Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
Drexel University or The Math Forum.



Re: Onto [0,1]
Posted:
Apr 21, 2013 4:40 AM


On Apr 21, 2:56 am, William Elliot <ma...@panix.com> wrote: > Can an uncountable compact Hausdorff be continuously mapped onto [0,1]?
Let X be the ordinal omega_1 + 1 with its order topology. X is an uncountable compact Hausdorff space. X can not be continuously mapped onto [0,1]. (Hint: X is scattered.) Whether X can be discontinuously mapped onto [0,1] is independent of ZFC.



