Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.math.mathematica

Topic: Calculating a simple integral
Replies: 10   Last Post: Jun 14, 2013 4:50 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Brambilla Roberto Luigi (RSE)

Posts: 25
Registered: 2/21/12
Re: Calculating a simple integral
Posted: Jun 11, 2013 2:24 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

I have for semplicity rewritten your integral as

f[x_,a_]:= Sqrt[2]Sin[x/2]/(x(x^2+a^2)(x+2Pi)(x-2Pi))
(*this function is NOT singular in 0,2Pi,-2Pi*)



The numerical integration is readily obtained

kr=0.09;

int1=2 NIntegrate[f[kz,kr]^2,{kz,0,Infinity}]
(*the integrand is even*)

0.691084



Also the indefinite integral is obtained in a couple of minutes (ver.8)

int2=Integrate[f[kz,kr]^2,{kz,0,Infinity}]=....

The result is a long expression that can be rewritten as

foo1[x_,y_]:=Im[MejerG[{{1,1,3/2},{}},{{1,1,3/2},{0,1/2}},x,y]]

foo2[x_,y_]:=Im[MejerG[{{1,1,3/2},{}},{{1,3/2,2},{0,1/2}},x,y]]

A=3 kr^7+28 kr^5 Pi2+

+16 Pi^5/2(5 kr^2+4Pi^2)*foo1[I kr/2,1/2]+

+32Pi^5/2(kr^2+4Pi^2)*foo2[I kr/2,1/2]

249.281

B=32 kr^5 Pi^3 (kr^2+4PI^2)

360.71

int2=A/B

0.691084

Bye Roberto






RSE SpA ha adottato il Modello Organizzativo ai sensi del D.Lgs.231/2001, inforza del quale l'assunzione di obbligazioni da parte della Societ=E0 avviene con firma di un procuratore, munito di idonei poteri.
RSE adopts a Compliance Programme under the Italian Law (D.Lgs.231/2001). According to this RSE Compliance Programme, any commitment of RSE is taken by the signature of one Representative granted by a proper Power of Attorney. Le informazioni contenute in questo messaggio di posta elettronica sono riservate e confidenziali e ne e' vietata la diffusione in qualsiasi modo o forma. Qualora Lei non fosse la persona destinataria del presente messaggio, Lainvitiamo a non diffonderlo e ad eliminarlo, dandone gentilmente comunicazione al mittente. The information included in this e-mail and any attachments are confidential and may also be privileged. If you are not the correct recipient, you are kindly requested to notify the sender immediately, to cancel it and not to disclose the contents to any other person.




Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.