Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: Matheology § 285
Replies: 84   Last Post: Jun 15, 2013 6:05 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Virgil

Posts: 8,833
Registered: 1/6/11
Re: Matheology � 285
Posted: Jun 13, 2013 7:24 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

In article <270a84c0-e9a0-465d-a3d6-29585029c16c@googlegroups.com>,
mueckenh@rz.fh-augsburg.de wrote:

> On Wednesday, 12 June 2013 23:51:52 UTC+2, Zeit Geist wrote:
> > On Wednesday, June 12, 2013 12:43:37 PM UTC-7, muec...@rz.fh-augsburg.de
> > wrote:
> >

> > > On Wednesday, 12 June 2013 18:09:05 UTC+2, Zeit Geist wrote:
> >
> > >
> >
> > >
> >
> > >
> >
> > > >> Why prove anything else on that obviously broken basis?
> >
> > >
> >
> > >
> >
> > >
> >
> > > > You haven't proved that! You claim your algorithm is such a proof, But
> > > > it fails.

> >
> > >
> >
> > >
> >
> > >
> >
> > > Then name a q or an n where my algorithm fails. Formal proofs based upon
> > > nonsense axioms are not acceptable, since I just disprove this nonsense
> > > formalism and the axioms which it is based upon.

> >
> > >
> >
> >
> >
> > Choose any q e Q.
> >
> > For you algorithm to work, we have to be able
> >
> > find a step n_1 where that 1/2 of the rationals
> >
> > less than q are well-ordered, a step n_2 where
> >
> > 2/3 of the rations less than q are well-ordered,
> >
> > and so on for all numbers in form of n/n+1.

>
> Same requirement could be required and not be satisfied in the process of
> enumerating the rationals. Never 2/3 of all rationals less than q are
> enumerated. That's just what I wanted to show.



> >
> > This will never happen in you algorithm,WM's false claim is that a union of well-ordered sets must be well-ordered. It is this provably false assumption on which WM's false argument depends.


WM claims that unioning sequences of well-ordered sets,
for example, unioning {-1}, {-2,-1}, {-3, -2, -1}, ...
will force the resulting infinite union, such as {...,-3, -2, -1}, to be
well-ordered.

To refresh WM's weak memory, an ordered set is only well-ordered when
every of its non-empty subsets has a least/smallest member according to
the overall ordering of the ordered set.

(i.e., every non-empty subset of {...,-3, -2, -1} including {...,-3,
-2, -1} itself must have, at least according to WM's claim, a most
negative member).

To repeat, WM claims that, because it is a union of an increasing
sequnce of well-ordered finite sets, every non-empty subset of {...,-3,
-2, -1}, including the set itself, must have a first/most-negative
member.

I challenge WM to provide us with any first/most-negative member of that
set of all negative integers, { ...,-3, -2, -1}.

Or, for that matter, of any infinite set of negative integers.


> >
> > so you never well-order all rationals in their
> >
> > order of magnitude.

>
> And this will never happen in countaing the rationals. Thanks.


The rationals have been "counted" many times without every becoming
well-ordered in their standard order.
--




Date Subject Author
6/11/13
Read Matheology § 285
mueckenh@rz.fh-augsburg.de
6/11/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology § 285
JT
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/11/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology § 285
Ralf Bader
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/13/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/13/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/14/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/14/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/14/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/14/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/15/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/15/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/15/13
Read Re: Matheology � 285
Virgil
6/15/13
Read Re: Matheology � 285
Tanu R.
6/15/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/15/13
Read Re: Matheology � 285
Virgil
6/15/13
Read Re: Matheology � 285
Virgil
6/14/13
Read Re: Matheology � 285
Virgil
6/13/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology � 285
Virgil
6/13/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/13/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology § 285
Virgil
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: WMytheology ???
Virgil
6/12/13
Read Re: WMytheology ???
Scott Berg
6/12/13
Read Re: WMytheology ???
Virgil
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/13/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/13/13
Read Re: Matheology § 285
Virgil
6/12/13
Read Re: Matheology § 285
Virgil
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology § 285
LudovicoVan
6/11/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/11/13
Read Re: Matheology § 285
LudovicoVan
6/11/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/12/13
Read Re:Outside the wild weird world of WMytheology
Virgil
6/12/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/12/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology � 285
Virgil
6/13/13
Read Re: Matheology § 285
mueckenh@rz.fh-augsburg.de
6/13/13
Read Re: Matheology � 285
Virgil
6/12/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology § 285
LudovicoVan
6/11/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology � 285
Tanu R.
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology § 285
Tucsondrew@me.com
6/11/13
Read Re: Matheology � 285
Virgil
6/11/13
Read Re: Matheology � 285
Tanu R.
6/11/13
Read Re: Matheology ? 285
Virgil
6/11/13
Read Re: Matheology ? 285
Tanu R.

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.