Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math.independent

Topic: A New Graph Coloring Conjecture.
Replies: 42   Last Post: Jul 2, 2013 4:08 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
quasi

Posts: 10,199
Registered: 7/15/05
Re: A New Graph Coloring Conjecture.
Posted: Jun 20, 2013 12:31 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

bill wrote:
>
>Okay.
>
>Finite planar graphs are 4-C because they cannot
>contain subgraphs isomorphic to K5!
>
>My thinking is thus. In any K4 subgraph one vertex is
>unavailable. Therefore, there is no way to force any set of
>4 vertices to have four different colors. Tangled chains are
>not due to the congiguration of the graph but result from a
>fortuitous coloring. Plus, if two chains are tangled; there
>will be two that are not tangled.
>
>If there are no forceable sets of four vertices, the graph
>must be 4 colorable.


Except that I've already shown you a counterexample.

quasi


Date Subject Author
6/18/13
Read A New Graph Coloring Conjecture.
b92057@yahoo.com
6/18/13
Read Re: A New Graph Coloring Conjecture.
Tucsondrew@me.com
6/18/13
Read Re: A New Graph Coloring Conjecture.
Tucsondrew@me.com
6/18/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/18/13
Read Re: A New Graph Coloring Conjecture.
Tucsondrew@me.com
6/18/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/19/13
Read Re: A New Graph Coloring Conjecture.
trj
6/20/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/20/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/20/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/22/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/23/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/25/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/25/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/25/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/26/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/26/13
Read Re: A New Graph Coloring Conjecture.
Brian Q. Hutchings
6/27/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/27/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/27/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/27/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/27/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/28/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/28/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/28/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/29/13
Read Re: A New Graph Coloring Conjecture.
quasi
7/1/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
7/2/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/19/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/19/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/20/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/20/13
Read Re: A New Graph Coloring Conjecture.
Tucsondrew@me.com
6/21/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/21/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/22/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/23/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/19/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/20/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/20/13
Read Re: A New Graph Coloring Conjecture.
quasi
6/20/13
Read Re: A New Graph Coloring Conjecture.
Butch Malahide
6/20/13
Read Re: A New Graph Coloring Conjecture.
Butch Malahide
6/19/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com
6/20/13
Read Re: A New Graph Coloring Conjecture.
b92057@yahoo.com

Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.