Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.math.mathematica

Topic: Integral Sum
Replies: 1   Last Post: Jun 29, 2013 4:46 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View  
Bob Hanlon

Posts: 906
Registered: 10/29/11
Re: Integral Sum
Posted: Jun 29, 2013 4:46 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply


rule = Integrate[expr1_, {z_, a_, b_}] +
Integrate[expr2_, {z_, a_, b_}] :>

Integrate[Simplify[expr1 + expr2], {z, a, b}];


Integrate[2*Exp[-z[1]*x]*x*V[x]/(z[1]*(z[1] + z[j])^2), {x, 0, Infinity}] +
Integrate[
Exp[-z[1]*x]*x*V[x]/(z[1]^2*(z[1] + z[j])^2), {x, 0, Infinity}] /. rule


Integrate[(x*V[x]*(1 + 2*z[1]))/
(E^(x*z[1])*(z[1]^2*(z[1] + z[j])^2)),
{x, 0, Infinity}]



Bob Hanlon




On Fri, Jun 28, 2013 at 4:12 AM, <losze1cj@gmail.com> wrote:

> Does any know why mathematica won't combine these integrals
> Integrate[
> 2*Exp[-z[1]*x]*x*V[x]/(z[1]*(z[1] + z[j])^2), {x, 0, Infinity}] +
> Integrate[
> Exp[-z[1]*x]*x*V[x]/(z[1]^2*(z[1] + z[j])^2), {x, 0, Infinity}]
> and how I can get it to?
>
> I am assuming that V[x] is simply a polynomial in x, so that the integrals
> are convergent.
>
> I would like to see this expression simplify to be
> Integrate[
> 2*Exp[-z[1]*x]*x*V[x]/(z[1]*(z[1] + z[j])^2) +
> Exp[-z[1]*x]*x*V[x]/(z[1]^2*(z[1] + z[j])^2), {x, 0, Infinity}], so that
> I can ultimately get to the simplified expression
> FullSimplify[
> Integrate[
> 2*Exp[-z[1]*x]*x*V[x]/(z[1]*(z[1] + z[j])^2) +
> Exp[-z[1]*x]*x*V[x]/(z[1]^2*(z[1] + z[j])^2), {x, 0, Infinity}]].
>
> Any tips?
> Thanks.
>
>




Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.