Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
NCTM or The Math Forum.


Virgil
Posts:
8,833
Registered:
1/6/11


Re: Matheology � 300
Posted:
Jul 12, 2013 4:41 PM


In article <ceb27d709aa14aae92d54b66e8e1317d@googlegroups.com>, mueckenh@rz.fhaugsburg.de wrote:
> On Friday, 12 July 2013 01:12:23 UTC+2, Zeit Geist wrote: > >> > > > >> Try to find some individuals that are not in one and the same line. Fail. > >> Recognize  or, most probably, not. > > > > > Ok, you win. > > There exist a line in the list, k, such that all n e N, n e k. > > No!!! It is simply absurd and stupid to talk about all n in N.
Then it must be equally stupid to claim proof by induction that something is true for all n in N.
But since , at least outside of WM's wild weird world of WMytheology, induction produces valid proofs of statements of the form "for all n in N, f(n)" WM's WMytheology does not hold outside of WM's WMytheology > > > Now, consider the line before k, m. > We know m consists of each member k except the last element. > Since k contians no last element, m has the same elements as k. > Therefore, every line contains all the Natual Numbers. > > > Is that a valid proof? > > I think it is. > > It is a valid proof. It proves that IF all naturals exist, THEN something > goes wrong..
So that, forunately only in WM's wild weird world of WMytheology, WM declares that all inductive proofs are invalid. 



