Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Can a fraction have none noneending and nonerepeating decimal representation?
Replies: 108   Last Post: Aug 16, 2013 5:22 PM

 Messages: [ Previous | Next ]
 JT Posts: 1,448 Registered: 4/7/12
Re: Can a fraction have none noneending and nonerepeating decimal representation?
Posted: Jul 31, 2013 6:02 PM

Den onsdagen den 31:e juli 2013 kl. 23:48:26 UTC+2 skrev Zeit Geist:
> On Wednesday, July 31, 2013 2:38:02 PM UTC-7, jonas.t...@gmail.com wrote:
>

> > Den onsdagen den 31:e juli 2013 kl. 23:18:14 UTC+2 skrev Zeit Geist:
>
> >
>
> > > On Wednesday, July 31, 2013 1:41:05 PM UTC-7, jonas.t...@gmail.com wrote:
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > > Or your arithmetic is not upto it, who knows
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > I think what you're not getting is that Pi, being irrational,
>
> >
>
> > >
>
> >
>
> > > is represented by an increasing sequence of rational
>
> >
>
> > >
>
> >
>
> > > numbers. However, Pi, the limit of the sequence, cannot
>
> >
>
> > >
>
> >
>
> > > be represented by a repeating or terminating decimal.
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > >
>
> >
>
> > > ZG
>
> >
>
> >
>
> >
>
> > Let me see what you are saying Pi is irrational ->because it is ***represented*** by an increasing sequense ***decimals***, well so is 1/3.
>
> >
>
> > Nothing new for me here. Yes i do know Pi is nonerepeating and increasing using ordinary decimals. And i do realise that if i can express Pi as a fraction or a series fractions, or using another base and make it have a fixed number of digits it becomes rational.
>
> >
>
>
>
> Pi is irrational by its nature.
>
> Unless you can express a transcendental base, it will never be a
>
> fraction.
>
>
>

> >
>
> > You know i really like to get rid of those zeros.
>
> >
>
> >
>
> >
>
> >
>
> >
>
> >
>
> >
>
> > Maybe you missed something i said.
>
>
>
> Maybe I just misunderstood.
>
>
>
> How do you propose to get rid of all those zeros?
>
>
>
> ZG

Using a geometric tool with symmetric properties, fractions, and bijective base that suits the symmetric properties of the object, that way i don't have to pretend that 1/3 is impossible to express as a complete term with finished expansion in the natural bases.

Date Subject Author
7/30/13 JT
7/30/13 JT
7/30/13 Virgil
7/31/13 JT
7/31/13 Virgil
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Virgil
7/31/13 Virgil
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 Tucsondrew@me.com
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 LudovicoVan
7/31/13 JT
7/31/13 LudovicoVan
7/31/13 JT
7/31/13 JT
7/31/13 JT
7/31/13 Virgil
8/1/13 JT
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/3/13 grei
7/31/13 JT
8/4/13 Brian Q. Hutchings
8/4/13 Brian Q. Hutchings
7/31/13 Tucsondrew@me.com
7/31/13 Virgil
8/1/13 magidin@math.berkeley.edu
8/1/13 JT
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/1/13 Virgil
8/1/13 Virgil
8/1/13 magidin@math.berkeley.edu
8/1/13 JT
8/1/13 JT
8/1/13 Virgil
8/1/13 Peter Percival
8/1/13 JT
8/1/13 Virgil
8/1/13 JT
8/1/13 Virgil
8/1/13 Virgil
8/1/13 magidin@math.berkeley.edu
8/1/13 Richard Tobin
8/2/13 David Bernier
8/2/13 JT
8/2/13 Richard Tobin
8/2/13 JT
8/2/13 Peter Percival
8/2/13 Richard Tobin
8/2/13 JT
8/2/13 Peter Percival
8/2/13 Richard Tobin
8/16/13 Earle Jones
8/2/13 Virgil
8/2/13 JT
8/2/13 RGVickson@shaw.ca
8/2/13 JT
8/2/13 Virgil
8/2/13 JT
8/2/13 Virgil
8/2/13 Virgil
8/2/13 Virgil
8/2/13 David Bernier
8/2/13 JT
8/2/13 Virgil
8/2/13 JT
8/2/13 JT
8/2/13 Virgil
8/3/13 David Bernier
8/3/13 David Bernier
8/4/13 David Bernier
8/2/13 quasi
8/2/13 JT
8/2/13 JT
8/2/13 Virgil
8/2/13 Shmuel (Seymour J.) Metz
8/2/13 JT
8/2/13 Virgil
8/2/13 FredJeffries@gmail.com
8/16/13 Earle Jones
7/31/13 JT
7/31/13 Phil H
7/31/13 JT
7/30/13 Earle Jones