Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: « Monsieur, personnellement, je ne suis pas d'accor
d avec Einstein... »

Replies: 8   Last Post: Oct 8, 2013 8:41 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Pentcho Valev

Posts: 3,471
Registered: 12/13/04
Re: « Monsieur, personnellement, je ne suis pas d'a
ccord avec Einstein... »

Posted: Sep 27, 2013 8:34 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

http://agenda.ipc.univ-paris-diderot.fr/spip.php?article95
Etienne Klein: "Il serait difficile d'expliquer d'où vient que les théories physiques, telles la physique quantique ou la théorie de la relativité, « marchent » si bien si elles ne disent absolument rien de vrai. Comment pourraient-elles permettre de faire des prédictions aussi merveilleusement précises si elles n'étaient pas d'assez bonnes représentations de ce qui est..."

En ce qui concerne la théorie de la relativité, une réponse partielle est donnée par Jean-Marc Bonnet-Bidaud:

http://irfu.cea.fr/Phocea/file.php?file=Ast/2774/RELATIVITE-052-456.pdf
Jean-Marc Bonnet-Bidaud: "Le monde entier a cru pendant plus de cinquante ans à une théorie non vérifiée. Car, nous le savons aujourd'hui, les premières preuves, issues notamment d'une célèbre éclipse de 1919, n'en étaient pas. Elles reposaient en partie sur des manipulations peu avouables visant à obtenir un résultat connu à l'avance, et sur des mesures entachées d'incertitudes, quand il ne s'agissait pas de fraudes caractérisées."

Autre piste de réponse : Si la théorie est inconsistante, elle peut expliquer et prédire tout:

http://cdn.preterhuman.net/texts/thought_and_writing/philosophy/rationality%20of%20science.pdf
W.H. Newton-Smith, THE RATIONALITY OF SCIENCE, 1981, p. 229: "A theory ought to be internally consistent. The grounds for including this factor are a priori. For given a realist construal of theories, our concern is with verisimilitude, and if a theory is inconsistent it will contain every sentence of the language, as the following simple argument shows. Let 'q' be an arbitrary sentence of the language and suppose that the theory is inconsistent. This means that we can derive the sentence 'p and not-p'. From this 'p' follows. And from 'p' it follows that 'p or q' (if 'p' is true then 'p or q' will be true no matter whether 'q' is true or not). Equally, it follows from 'p and not-p' that 'not-p'. But 'not-p' together with 'p or q' entails 'q'. Thus once we admit an inconsistency into our theory we have to admit everything. And no theory of verisimilitude would be acceptable that did not give the lowest degree of verisimilitude to a theory which contained each sentence of the theorys language and its negation."

http://www.informaworld.com/smpp/content~content=a909857880
Peter Hayes "The Ideology of Relativity: The Case of the Clock Paradox" : Social Epistemology, Volume 23, Issue 1 January 2009, pages 57-78: "Precisely because Einstein's theory is inconsistent, its exponents can draw on contradictory principles in a way that greatly extends the apparent explanatory scope of the theory. Inconsistency may be a disadvantage in a scientific theory but it can be a decisive advantage in an ideology. The inconsistency of relativity theory - to borrow the language of the early Marx - gives relativity its apparent universal content. This seeming power of explanation functions to enhance the status of the group, giving them power over others through the enhanced control over resources, and a greater power to direct research and to exclude and marginalise dissent."

Pentcho Valev




Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.