Search All of the Math Forum:
Views expressed in these public forums are not endorsed by
NCTM or The Math Forum.



Re: Numbersystems, bijective, padic etc
Posted:
Oct 1, 2013 3:22 PM


On Monday, September 30, 2013 5:57:49 PM UTC+2, jonas.t...@gmail.com wrote: > When i've played with constructing *zeroless* numbersystems i've come a cross terms like bijective and padic, since my formalised knowledge of math terms is null. I wonder what these terms really mean and their origin, and is there a difference between bijective base 10 and padic base 10? > > > > My native language is not english so what does a numbersystem being padic and bijective really refer to? > > > > Basicly i wonder what does these term bring to the properties and understanding of the numbersystem that is missing by simply using zeroless bases? > > > > I do realise that zeroless basesystem may indeed end up with a different set of arithmetic and calculus. But what does these terms bring that zeroless base can not encapsulate? > > > > I will implement some general purpose padic??? numbersystem converter and some basic arithmetic working for any padic +,,*,/ SQR,SQRT maybe > > > > Also i wonder about radix notation, when you use decimals to represent numbers in higher bases then 10, what is this type of numerical notation of a base called. > > > > Base 10 number 1344556 > > Base 77 number 2,72,59,59, > > > > I have a feeling that radix notation is not the correct term for what i use above or is it? > > > > If i write a basechanging function constructed using padic and this comma separated decimal notation system, what should i call it so people in math understand the notation? > > > > A general purpose base changing algorithm using > > Padic and comma separated decimal notation?
Hi.
Your translation from
Base 10 number 1344556 to
Base 77 number 2,72,59,59,
is correct in the meaning that I understand what you do. I have not seen any representation of these translation other than the obvioous 0,1,2,3,...a.b,..,f for the radix 16( I know there are others for bigger radises, but these are seldom used. I would think that [2,72,59,59]radix(77) could be a meaningfull notation ?
KON



