Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » Software » comp.soft-sys.matlab

Topic: Improving ANN results
Replies: 16   Last Post: Nov 13, 2013 9:10 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
chaudhry

Posts: 23
Registered: 10/13/13
Re: Improving ANN results
Posted: Oct 17, 2013 8:49 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

"Greg Heath" <heath@alumni.brown.edu> wrote in message <l3kj60$mlt$1@newscl01ah.mathworks.com>...
> "Greg Heath" <heath@alumni.brown.edu> wrote in message <l3khqr$1fe$1@newscl01ah.mathworks.com>...
> > "chaudhry " <bilal_zafar9@yahoo.com> wrote in message <l3ebuu$evs$1@newscl01ah.mathworks.com>...
> >

> > > How to improve ANN results by reducing error through hidden layer size, through MSE, or by using while loop?
> >
> > Your data is not a good learning example. (Small size, constant x(1,:), weak relationship between input and target )
> >
> > 1. Practice on MATLAB data (e.g., simplefit_dataset)

>
> close all, clear all, clc
> format short
>
> x = [31 9333 2000;31 9500 1500;31 9700 2300;31 9700 2320;...
> 31 9120 2230;31 9830 2420;31 9300 2900;31 9400 2500]'
> t = [35000;23000;3443;2343;1244;9483;4638;4739]'
> xnew = [31 9333 2000]'
>
> % [ x, t ] = simplefit_dataset; % Better learning example
>
> [ I N ] = size( x ) % [ 3 8 ]
> [ O N ] = size( t ) % [ 1 8 ]
>
> %Standardization?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! why standardizing
> varx = var( x') % 1e5 * [ 0 0.585 1.63 ] %Huge
> vart = var( t ) % 1.47e8 % Ditto
>
> % Delete x(1,:) and standardize!!!!!!!!we have deleted beacuse itz variance=0
>
> x = x(2:3,:); %Omit for simplefit_dataset!!!!!!!?
> zx = zscore(x',1)';!!!!!!!!!!!!!!!!!!what is this i cant understnd tht
> zt = zscore(t',1)';!!!!!!!!!!!!!!!!!!!


!!!!!!!!!!!!!!!!!!what is this i cant understnd tht
> MSE00 = var(t',1) % = 1 Reference Mse
> Ntst = round(0.15*N) % = 1 default
> Ntrials = max(10,30/Ntst) % 30 !!!!!what is this criteria for trials
>
> % Use default No. of hidden nodes (10)
>
> net = fitnet;
>
> rng(0)
> for i=1:Ntrials
> net = configure(net,x,t);
> [net tr ] = train(net,x,t);
> R2trn(i,1) = 1 - tr.best_perf/MSE00; !!!!!!!!!!!!!!!!!!what is this i cant understnd tht ..what R2TRN(i,1)
> R2val(i,1) = 1 - tr.best_vperf/MSE00;
> R2tst(i,1) = 1 - tr.best_tperf/MSE00;
> end
> R2s = [ R2trn R2val R2tst ]
> %why finding min.med...means....std.....maxs.....
> minR2s = min(R2s) % -13.2021 -17.1237 -22.9422
> medR2s = median(R2s) % 0.7096 0.4177 0.1100
> meanR2s = mean(R2s) % -0.8757 -1.2760 -1.8358
> stdR2s = std(R2s) % 3.4060 3.9508 4.8567
> maxR2s = max(R2s) % 1.0000 1.0000 0.9965
> sortR2s = sort(R2s)
>
> % sortR2s = -13.2021 -17.1237 -22.9422
> % -10.4006 -9.8592 -8.5426
> % -4.5224 -6.3693 -6.8485
> % -4.1019 -5.0681 -6.5369
> % -3.7170 -3.6865 -5.7350
> % -2.0340 -2.4595 -5.0384
> % -1.7259 -2.4565 -4.0096
> % -1.3995 -1.6079 -3.6787
> % -1.2526 -1.6025 -0.5167
> % -0.2069 -1.0937 -0.3695
> % -0.1213 -0.6480 -0.2804
> % 0.1603 -0.2390 -0.2782
> % 0.4618 0.1275 -0.2124
> % 0.6146 0.1944 -0.1174
> % 0.6782 0.2760 0.0623
> % 0.7410 0.5594 0.1577
> % 0.9138 0.7007 0.2807
> % 0.9301 0.7012 0.3786
> % 0.9488 0.7098 0.4315
> % 0.9736 0.7654 0.4789
> % 0.9917 0.9362 0.4834
> % 0.9999 0.9819 0.6334
> % 1.0000 0.9890 0.7886
> % 1.0000 0.9957 0.8014
> % 1.0000 0.9982 0.8439
> % 1.0000 0.9996 0.9090
> % 1.0000 0.9996 0.9091
> % 1.0000 0.9997 0.9253
> % 1.0000 0.9998 0.9510
> % 1.0000 1.0000 0.9965
>
> % Note that only 2 of 30 designs have R2tst >= 0.95 !!!
>
> % In contrast, for the simplefit_data set (x(1,:) NOT deleted)
> %
> % Ntrials = 10
> % R2s = 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 1.0000 1.0000
> % 1.0000 0.9997 1.0000
> % 1.0000 1.0000 0.9999
>
> Now try minimizing the number of hidden nodes for the simplefit example.
>
> Hope this helps.
>
> Greg



sir greg....what should i conclude ...which is to use ....delete row 1 of dataset or not

sir why u didnt counter weights and sir by giving loop to trials...what happens...is that not better if v give loop for mse value.......
such that system will train untill the mse value is at its minimum(what v have given)

sir i am using dataset of excel sheet of 79 cross 30 ..matrix.....which i have divided as inputs and targets....

sir in the code above i have mentioned the lines which i didnt understnd so plz kindly explain me that



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.