Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: 2506=2*10^3+5*10^2+0*10+6^1*10^0
Replies: 8   Last Post: Oct 30, 2013 1:44 PM

 Messages: [ Previous | Next ]
 JT Posts: 1,434 Registered: 4/7/12
Re: 2506=2*10^3+5*10^2+0*10+6^1*10^0
Posted: Oct 30, 2013 7:13 AM

Den tisdagen den 29:e oktober 2013 kl. 21:00:44 UTC+1 skrev Virgil:
>
> jonas.thornvall@gmail.com wrote:
>
>
>

> > Den tisdagen den 29:e oktober 2013 kl. 20:16:53 UTC+1 skrev
>
> > jonas.t...@gmail.com:
>
> > > 2506=2*10^3+5*10^2+0*10+6^1*10^0
>
> > >
>
> The above is sometimes called a "base 10 expansion" or "decimal
>
> expansion".
>
>
>
> And while there are comparable binary, octal and hexadecimal expansions,
>
> particulatlry in computer technology, the expansions below are of quite
>
> a different type, and have no name that I am aware of.
>

> > >
>
> > > Is there a name for when you write out a number as the right side
>
> > > expression?
>
> >
>
> > If so there must be a name for when you write out expression like.
>
> > Exp=x^2
>
> > 7777777777= 88191 353 26 3 +2 = 88191^2+ 353^2+ 26^2+ 3^2 +2
>
> > Exp=x^3
>
> > 7777777777= 1981 153 33 10 4 3 3 +4=1981^3+ 153^3+ 33^3+ 10^3+ 4^3+ 3^3+ 3^3
>
> > +4
>
> > Exp=x^4
>
> > 7777777777= 296 100 33 12 9 5 4 3 3 2 2 2 +12 =296^4+ 100^4+ 33^4+ 12^4+ 9^4+
>
> > 5^4+ 4^4+ 3^4+ 3^4+ 2^4+ 2^4+ 2^4 +12
>
> >
>
> > Or maybe there simply isn't so what should i call these forms?
>
> --

Virgil, it seems that each conversion is unique to a certain numbers, so is it fair to call these exponential modulus transformations numbersystems.
I think it is possible to construct a common extentsional generic arithmetic for these numbers. And it seem we actually can remove the spaces, it will be very hard to read for human but so is binary, ternary, octal and hexadecimal.

Exponential modular/modulus numbersystems?

Date Subject Author
10/29/13 JT
10/29/13 JT
10/29/13 Virgil
10/30/13 JT
10/30/13 JT
10/30/13 JT
10/30/13 scattered
10/30/13 JT
10/30/13 JT