Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Topic: Uncountability of the Real Numbers Without Decimals
Replies: 110   Last Post: Dec 10, 2013 4:33 AM

 Search Thread: Advanced Search

 Messages: [ Previous | Next ]
 Virgil Posts: 8,833 Registered: 1/6/11
Re: Uncountability of the Real Numbers Without Decimals
Posted: Dec 2, 2013 2:43 PM
 Plain Text Reply

In article <6c1ee44b-a4ee-4d6c-9578-898b9268c627@googlegroups.com>,
WM <wolfgang.mueckenheim@hs-augsburg.de> wrote:

> Am Montag, 2. Dezember 2013 16:53:04 UTC+1 schrieb christian.bau:
> > On Monday, December 2, 2013 1:36:40 PM UTC, WM wrote:
> >

> > > Am Montag, 2. Dezember 2013 09:09:39 UTC+1 schrieb Zeit Geist:
> >
> > > > The proof proceeds by Contradiction. We assume the Set of Real Numbers
> > > > is Countable, and thus can be exhausted in a Sequence.

> >
> > >
> >
> > > And that is the point at which further reading is absolutely useless.
> >
> >
> >
> > Please explain your reasoning. I didn't find anything wrong with the proof,

>
> that puts you in aline with thousands of mathematicians.

And only in conflict with one anti-mathematician, WM!
>
> > and if I missed something, I'm quite sure it's fixable.
>
> That is not an argument.

It is as good an argument as WM has ever produced.
>
> The set of positive rational numbers that is less than the natural number n
> and has not been enumerated by the first n natural numbers grows with n.

But its size does not, as the "number" of ratioals in any interval of
positive lenght is the same as in any other such interval.

> It
> is impossible eneumerate all rational numbers, i.e., to remove all rationals
> from the state of being not enumerated to the state of being enumerated.

It may be in WM's wild weird world of WMytheology, but not elsewhere,
since bijections between |N and |Q abound outside of WM's wild weird
world of WMytheology.
>
> It has been neglected that beyond every n there are infinitely
> many following, such that never all can have been used.

One can well-order the rationals as follows:

Each rational, n/d, is represented by the quotient of
an integer numerator, n,
and a natural number denominator, d,
with no common integer divisors greater than 1
then define a new ordering on the rationals so that
n1/d1 > n2/d2 if and only if
either | n1 | + d1 < | n2 | + d2
or both | n1 | + d1 = | n2 | + d2 and n1 < n2.

Then the set of all rationals reordered as above is order-isomorphic to
the naturally well-ordered set of naturals, producing a natural
bijection between |Q and |N.

But WM is incapable of understanding anything so straightforward and
simple as the above, WM has to make things so complicated that no one
can sort them out before he feels comfortable with them.

I dare WM to try to find any flaw in the above well-ordering of the
rationals so as to have only one non-successor element preceding all
others.
--

Date Subject Author
12/2/13 Tucsondrew@me.com
12/2/13 William Elliot
12/2/13 Tucsondrew@me.com
12/2/13 G. A. Edgar
12/2/13 Tucsondrew@me.com
12/2/13 wolfgang.mueckenheim@hs-augsburg.de
12/2/13 gnasher729
12/2/13 wolfgang.mueckenheim@hs-augsburg.de
12/2/13 Virgil
12/2/13 Tucsondrew@me.com
12/2/13 Virgil
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 Tucsondrew@me.com
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Virgil
12/3/13 Virgil
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Tucsondrew@me.com
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 Virgil
12/5/13 Virgil
12/10/13 Robin Chapman
12/2/13 Virgil
12/2/13 wolfgang.mueckenheim@hs-augsburg.de
12/2/13 Virgil
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 Virgil
12/2/13 Tucsondrew@me.com
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 Tucsondrew@me.com
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Tucsondrew@me.com
12/5/13 Michael F. Stemper
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 Virgil
12/6/13 wolfgang.mueckenheim@hs-augsburg.de
12/6/13 Tucsondrew@me.com
12/6/13 wolfgang.mueckenheim@hs-augsburg.de
12/6/13 Virgil
12/6/13 Brian Q. Hutchings
12/7/13 Brian Q. Hutchings
12/7/13 Brian Q. Hutchings
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 fom
12/7/13 albrecht
12/7/13 fom
12/7/13 ross.finlayson@gmail.com
12/8/13 albrecht
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 fom
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 fom
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 Virgil
12/7/13 fom
12/8/13 Virgil
12/7/13 Virgil
12/7/13 Virgil
12/7/13 Virgil
12/8/13 albrecht
12/6/13 Virgil
12/6/13 Virgil
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 Virgil
12/5/13 Virgil
12/3/13 Virgil
12/3/13 Michael F. Stemper
12/3/13 Virgil
12/3/13 fom
12/2/13 Tucsondrew@me.com
12/2/13 wolfgang.mueckenheim@hs-augsburg.de
12/2/13 Virgil
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 Virgil
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Virgil
12/2/13 Virgil
12/2/13 Tucsondrew@me.com
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 Virgil
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 gnasher729
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 gnasher729
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Virgil
12/3/13 Virgil
12/3/13 Virgil
12/5/13 gnasher729
12/3/13 Tucsondrew@me.com
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Tucsondrew@me.com
12/5/13 Tucsondrew@me.com
12/5/13 Virgil
12/3/13 wolfgang.mueckenheim@hs-augsburg.de
12/3/13 Tucsondrew@me.com
12/5/13 wolfgang.mueckenheim@hs-augsburg.de
12/5/13 Tucsondrew@me.com
12/7/13 wolfgang.mueckenheim@hs-augsburg.de
12/7/13 Virgil
12/8/13 wolfgang.mueckenheim@hs-augsburg.de
12/8/13 Virgil
12/5/13 Virgil
12/3/13 Virgil
12/2/13 ross.finlayson@gmail.com
12/4/13 ross.finlayson@gmail.com
12/3/13 albrecht
12/3/13 Tucsondrew@me.com
12/5/13 albrecht
12/5/13 Tucsondrew@me.com

© The Math Forum at NCTM 1994-2017. All Rights Reserved.