
Re: complex conjugation by star
Posted:
Apr 20, 2014 4:46 AM


See documentation for Conjugate.
To see traditional star notation, use TraditionalForm preference: Traditional Form (Mathematica  Preferences...  Evaluation  Format type of new output cells:  TraditionalForm)
Clear[conjugate]
conjugate[expr_, complexExpand_: False] := Module[{expr2 = Conjugate /@ expr}, If[complexExpand, Simplify[expr2, Element[Cases[expr, _Symbol, Infinity], Reals]], expr2]]
BesselJ[2, x + I y] // Conjugate
Conjugate[BesselJ[2, x + I y]]
BesselJ[2, x + I y] // conjugate
BesselJ[2, Conjugate[x]  I Conjugate[y]]
BesselJ[2, x + I y] // conjugate[#, True] &
BesselJ[2, x  I y]
A B C // Conjugate
Conjugate[A B C]
A B C // conjugate
Conjugate[A] Conjugate[B] Conjugate[C]
A + B + C // Conjugate
Conjugate[A + B + C]
A + B + C // conjugate
Conjugate[A] + Conjugate[B] + Conjugate[C]
Bob Hanlon
On Fri, Apr 18, 2014 at 1:46 AM, Brambilla Roberto Luigi (RSE) < Roberto.Brambilla@rseweb.it> wrote:
> I have defined the following useful star complexconjugation (common star > exponent notation) > > f_*:=f/.Complex[u_,v_]>Complex[u,v] > > and it works fine. For example BesselJ[2,x+I y]* gives BesselJ[2,xI y] > etc...(x,y defined/undefined). > Also it is listable on number lists > > {1+i2, 5+i6}* gives {1i2, 5i6} . > > Unfortunately it does not work on symbols, i.e. > A* gives A even if I have defined A as a complex number by means of > Element[A, Complexes]. > Similarly if I define Element[{A,B,G}, Complexes] > > {A,B,G}* gives {A,B,G} and (A+B+G)* gives A+B+G. > > I'd like to obtain {A*,B*,G*} and A*+B*+G* ( ! ) > > Is it possible to fix this deficiency, unpleasant in manipulating general > expressions where is not known > if symbols represent real or complex variables ? > > Many thanks! > Rob > >

