The Math Forum

Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Math Forum » Discussions » sci.math.* » sci.math.symbolic

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Rubi 4.5 released
Replies: 21   Last Post: Jun 29, 2014 4:29 AM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
Nasser Abbasi

Posts: 6,677
Registered: 2/7/05
Re: Rubi 4.5 released
Posted: Jun 22, 2014 1:06 AM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

On 6/21/2014 10:06 AM, wrote:

> Integration Example #75 from Chapter 5 of the Timofeev Test Suite ran
> into a 25-second timeout on Version 4.4. Does Rubi 4.5 resurface
> eventually, and what is the final result, or error message?

Taking the problem from
page 55:

Rubi 4.5 solves this on my PC in about 5 seconds.

num = (Cos[2 x] - 3 Tan[x]) Cos[x]^3;
den = (Sin[x]^2 - Sin[2 x]) Sin[2 x]^(5/2);
Int[num/den, x]

(*The result is too large to post here as is, but after
simplify, here it is:)


-((1/(240*Sqrt[Sin[2*x]]))*((495*Cos[x]*EllipticF[ArcSin[Sqrt[Tan[x/2]]], -1])/
(Sqrt[Cot[x/2]]*Sqrt[Cos[x]*Sec[x/2]^2]) +
EllipticPi[-(2/(-1 + Sqrt[5])), I*ArcSinh[Sqrt[Tan[x/2]]], -1]*
Sqrt[Cos[x]*Sec[x/2]^2] + 990*I*Cot[x/2]^(3/2)*
EllipticPi[2/(1 + Sqrt[5]), I*ArcSinh[Sqrt[Tan[x/2]]], -1]*
Sqrt[Cos[x]*Sec[x/2]^2] + (1/8)*Csc[x/2]^4*Sec[x/2]^2*
(99*Cos[x] - 147*Cos[3*x] + 200*Cos[x]^2*Sin[x]))))

> I am curious how far Rubi 4.5 allows one to go with Martin's integrals:
> <>
> <>

I looked at these links. The integrals you have there are definite ones, but
Rubi only does indefinite. How should one apply these to Rubi?

---------- from one of the above links--------

int(int((jxx(r*cos(p)-a/2, r*SIN(p), z) * jxx(r*COS(p)+a/2, r*SIN(p),
z) + jxy(r*cos(p)-a/2, r*SIN(p), z) * jxy(r*COS(p)+a/2, r*SIN(p),
z))*r, r, 0, inf), p, 0, 2*pi)


Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© The Math Forum at NCTM 1994-2018. All Rights Reserved.