Search All of the Math Forum:

Views expressed in these public forums are not endorsed by NCTM or The Math Forum.

Notice: We are no longer accepting new posts, but the forums will continue to be readable.

Topic: Rubi 4.5 released
Replies: 21   Last Post: Jun 29, 2014 4:29 AM

 Messages: [ Previous | Next ]
 Albert D. Rich Posts: 311 From: Hawaii Island Registered: 5/30/09
Re: Rubi 4.5 released
Posted: Jun 23, 2014 4:27 PM

On Monday, June 23, 2014 1:17:12 AM UTC-10, clicl...@freenet.de wrote:

> INT(192*r*z^2*(a^2 - 4*c^2*r^2)*(16*z^4*(a^2 + 4*r^2)
> + (8*z^2 + a^2 + 4*r^2)*(a^4 + 8*a^2*r^2*(1 - 2*c^2) + 16*r^4))
> /((a^4 + 8*a^2*r^2*(1 - 2*c^2) + 16*r^4)*((4*z^2 + a^2)^2
> + 8*r^2*(4*z^2 + a^2*(1 - 2*c^2)) + 16*r^4)^(5/2)), r)
> + INT(48*r*z*(4*c^2*r^2 - a^2)/((a^2 - 4*a*c*r + 4*r^2)
> *(4*z^2 + a^2 + 4*a*c*r + 4*r^2)^(5/2)), r)
> + INT(48*r*z*(4*c^2*r^2 - a^2)/((a^2 + 4*a*c*r + 4*r^2)
> *(4*z^2 + a^2 - 4*a*c*r + 4*r^2)^(5/2)), r)
>
> and served in this form should be found digestible by Rubi.

Yes, Rubi can digest it and returns an antiderivative with a leaf count of 4850. Mathematica returns one with a leaf count of 7479.

Albert