Drexel dragonThe Math ForumDonate to the Math Forum



Search All of the Math Forum:

Views expressed in these public forums are not endorsed by Drexel University or The Math Forum.


Math Forum » Discussions » sci.math.* » sci.math

Topic: *** CRANK ALERT ***
Replies: 11   Last Post: Jul 10, 2014 10:01 PM

Advanced Search

Back to Topic List Back to Topic List Jump to Tree View Jump to Tree View   Messages: [ Previous | Next ]
John Gabriel

Posts: 88
Registered: 2/28/14
Re: 1.90 - What is a tangent line anyway?
Posted: Jul 7, 2014 2:56 PM
  Click to see the message monospaced in plain text Plain Text   Click to reply to this topic Reply

1. Does the slope of a straight line ever change?

No. Even a vertical line has a slope in terms of an angle. The slope is defined everywhere. Likewise the slope of a straight line is defined everywhere -- in accordance with John Gabriel's New Calculus definition.


> 2. Is the derivative a special kind of slope?

This question makes a lot of sense. Slope always means the inclination of a straight line with the horizontal or vertical. Derivative always means the slope of a special kind of straight line called a tangent line.


> 3. Do the tangent lines to any function have slopes that ever change?


No. The slopes of tangent lines never change.


> 4. Is an instantaneous rate of change real?

No. It is a misconception by ignorant mathematicians whom John Gabriel has corrected.

> After all, f(x)=5x^6 - 3x^5 + 2 has not changed in the last trillion light years or before that. It's tangent lines have always had the same predictable slopes.

This argument makes perfect sense. If we plotted f(x) one trillion light years ago and we plotted it today, it would have exactly the same tangent lines whose slopes are always the same, because ALL tangent lines are straight lines.



Point your RSS reader here for a feed of the latest messages in this topic.

[Privacy Policy] [Terms of Use]

© Drexel University 1994-2014. All Rights Reserved.
The Math Forum is a research and educational enterprise of the Drexel University School of Education.